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1  INTRODUCTION 

In the digital hardware development field, ensuring the functionality of a design is crucial 
before moving to fabrication. This process of functional design verification detects and rectifies any 
issues prior to manufacturing, thereby reducing the risk of costly errors. However, this verification 
process is both complex and resource-intensive, consuming an estimated 70% of time and resources 
in the digital design process and creating a bottleneck on the speed that new products can be 
brought to market [1]. As hardware complexity continues to grow exponentially, finding efficient 
and cost-effective verification methods becomes increasingly important. 
  
 To address this challenge, there is a broad effort to develop tools and frameworks that 
streamline the verification process. Broadly, these systems fall into two categories: simulation and 
emulation.  I will further draw a distinction between tools that are available from traditional “Big 3” 
EDA vendors, Cadence, Synopsis, and Siemens, with newer, open-source tools that are beginning 
to gain traction in the functional verification landscape. 
 
 This paper introduces a novel verification framework that strives to combine the speed of 
traditional emulation tools with the power, ease, and flexibility of the Python ecosystem. Notably, 
this framework is open-source and utilizes inexpensive off-the-shelf hardware, eliminating the high 
costs associated with traditional emulation platforms. 
 
 The paper also explores the advantages of this framework, highlighting its flexibility and 
accessibility compared to conventional emulators. Additionally, potential performance 
improvements over existing simulation tools are investigated. 
 
2  BACKGROUND 
  Broadly, functional design verification deals with two questions: are two models of the 
design under verification equivalent, and does a model of the design operate correctly [2]? This is 
analogous to writing unit tests in software engineering. To answer these questions for a hardware 
design, it is necessary to replicate the behavior of the design quickly and accurately, to see how it 
behaves under different test stimulus. To reproduce the behavior of the hardware model, two main 
methods are used: simulation and emulation. Each of these methods have different tools available 
from the “Big 3” vendors, as well as open-source alternatives. We will explore the benefits and 
drawbacks of each method in depth.  
 
 These models are described using a traditional hardware description language (HDL) such as 
SystemVerilog or VHDL. Additionally, module testbenches, used to drive input stimuli to the 
design and verify its output accuracy, are traditionally written in SystemVerilog, often utilizing 
Universal Verification Methodology (UVM) [1]. However, the increasing success of open-
source verification tools has introduced new languages for testbench design, with Python emerging 



as a powerful, open-source alternative to traditional SystemVerilog testbench design, which we'll 
delve into further. 
 
Simulation 

Simulation is the most common form of design verification [2]. High performance 
simulators are available from most of the major EDA vendors, including Siemens ModelSim, 
Synopsis VCS, and Xilinx Xsim [3] [4] [5]. These programs run on a traditional computer to 
simulate the behavior of RTL hardware models. The objective with simulation is to enable quick and 
flexible development of these testbenches. 

 
Emulation  

Emulation, on the other hand, utilizes a dedicated hardware emulator to mimic the behavior 
of the RTL model without the need for compilation and execution on a conventional computer. 
Although mapping an RTL design onto emulation hardware requires significant testbench overhead, 
the hardware enables individual test vectors to run thousands of times faster, a desirable tradeoff for 
larger designs with complex testbenches [2].  

 
In most setups, a host computer manages the testbench and generates the test vectors to 

keep the emulator occupied. Emulation tools and the necessary hardware are available from major 
EDA vendors like Cadence Palladium Z1, Synopsys ZeBu, Siemens Veloce, and Xilinx 
Alveo [6] [4] [3] [5]. However, these software tools and accompanying emulation hardware are often 
prohibitively expensive, posing a barrier to entry for verification engineers seeking to leverage the 
benefits of emulation. 

 
Python 

Python, as an open-source, general-purpose programming language, has gained traction in 
testbench design alongside the increasing availability of open-source design verification tools, which 
we'll explore later in more detail. Python testbenches offer advantages due to the language's 
flexibility and ease of use compared to a traditional HDL like SystemVerilog or UVM. Python is 
familiar to a larger pool of engineers, and its ecosystem provides access to numerous packages for 
developing rich, powerful testbenches across a variety of domains [7]. In terms of language 
complexity, Python is notably simpler, with only 23 keywords compared to SystemVerilog's 221 
keywords [8]. 

 

 
Figure 1: http://www.fivecomputers.com/language-specification-length.html 



 
3  RELATED WORK 

Due to the expensive, closed source nature of the verification tooling from the big vendors, 
and the success of the open-source software ecosystem, there has been a substantial effort in recent 
years to develop a suite of open-source tools for digital hardware design, including a host of open-
source Verilog simulators and emulators. Some of these open-source simulation tools have 
Python front-ends available, exposing the verification engineer to the flexibility and power of the 
Python ecosystem.   
 

Tool Open Source Simulation Emulation Python-based 
Traditional Tools  X X  
Icarus Verilog X X   

Cocotb X X  X 
Verilator X X   
PyMTL X X  X 
Firesim X  X  

Table 1: Summary of Open-Source Verification Tools 

 
Icarus Verilog 
 Icarus Verilog is a free and open-source Verilog compiler, intended to generate high 
performance code for back-end tools [9]. Although in development since 2000, it still exhibits 
notable limitations compared to other simulators. Notably, Icarus Verilog lacks support for 
SystemVerilog or UVM testbenches, which are the modern standard for complex testbench design, 
limiting its utility within the industry. 
 
Cocotb 

Cocotb is another free and open-source digital logic verification framework, notable because 
cocotb testbenches are written using the open-source Python programming language, rather than 
SystemVerilog. Cocotb is not another simulator, but rather a Python frontend that supports 
many existing simulators, including open-source solutions like Icarus Verilog, as well as closed 
source alternatives like Synopsys VCS and Siemens Modelism. According to the documentation, 
cocotb encourages the same philosophy of design reuse and randomized testing as UVM but 
implemented in Python [7].  
 



 
Figure 2: Sample cocotb code [8] 

Verilator 
Verilator claims to be the fastest Verilog/SystemVerilog simulator available, 

outperforming many closed source commercial simulators by 200-1000x [10]. It achieves this by 
compiling the Verilog or SystemVerilog module into an optimized, multithreaded model of the 
design, which is then wrapped in a C++ or SystemC wrapper and compiled using traditional 
compilers like GCC [10].  

 
Despite its impressive performance and support for both SystemVerilog and Verilog, 

Verilator lacks many features of traditional simulators and is primarily intended for high-speed 
simulation and integration of SystemVerilog models with C code [10]. Furthermore, it does not 
natively support Python testbenches and is not a supported backend of cocotb, limiting verification 
engineers to Verilog and SystemVerilog testbenches. 

 

 
Figure 3: Verilator Multithreaded Performance [11] 

PyMTL 
 PyMTL is a novel, free and open-source Python-based hardware generation, simulation, and 
verification framework [12]. In the PyMTL workflow, hardware designs and their corresponding 
testbenches are both defined using Python, gradually refined by the verification engineer. Once the 
design is finalized, the PyMTL framework facilitates exporting the testbench and model as Verilog 
code, compatible with traditional EDA tools. 
 



 
Figure 4: PyMTL's workflow. 

Firesim 
Firesim serves as an open-source emulation alternative from UC Berkeley, utilizing general-

purpose FPGAs to accelerate the simulation process either locally or in the cloud using Amazon F1 
instances. Testbenches within Firesim can be written using traditional Verilog or Chisel, 
Berkeley’s hardware description language, and emulated at speeds ranging from 10s to 100s of MHz 
[13]. However, while Firesim represents a significant advancement in the open-source hardware 
movement, it is limited to testbenches written in Verilog or Chisel, thus precluding verification 
engineers from leveraging the powerful Python ecosystem in their testbench designs. 
 
 
4  DEVELOPMENT 
PyDVE 

Considering the popularity of Python-based simulation frameworks, and the remarkable 
speedup of emulation offerings from traditional vendors, there is a notable lack of solutions for 
running Python-based testbenches with emulation. PyDVE was developed to bridge this gap, offering 
an open-source framework for running Python-based testbenches with emulation. The goal of 
PyDVE is to combine the flexibility, ease-of-use, and extendibility of the Python ecosystem with the 
speed benefits of a traditional emulation system. 
  

 SYSTEMVERILOG PYTHON 
SIMULATION Traditional Simulators, 

Icarus Verilog 
Cocotb 

EMULATION Traditional Emulators, 
Firesim 

PyDVE 

Table 2: The missing python-based emulation tool... 

Architecture 
 Since PyDVE relies on emulation to replicate the behavior of the design under test (DUT), 
additional hardware is necessary for its operation. To ensure affordability and accessibility, a 
hardware architecture utilizing readily available components was chosen. Specifically, the Kria 
KV260 development board by Xilinx, priced under $400, was selected. This board features the 
Zynq UltraScale+ MPSoC, integrating an ARM processor tightly coupled with a Zynq FPGA. 
 
The choice of the Kria board is rooted in its support for the PYNQ framework, an open-source 
project developed by AMD, which provides a Python software interface for interacting with FPGA 
designs [14]. This compatibility ensures seamless integration with the PyDVE package, facilitating 
efficient testing processes. 



 
Figure 5: PyDVE Hardware and Software Architecture 

 The system consists of a host computer connected to the Kria board via either a high-speed 
network or a serial connection, enabling multiple Kria boards to connect simultaneously for 
concurrent testing and a greater test throughput. 
 

On the host CPU, engineers access the PyDVE Python package, facilitating the transmission 
of the DUT to the development board and the transmission of transaction-level stimulus to the 
emulator board. 

 
Meanwhile, the Kria Board's embedded CPU operates a server, which awaits commands 

from the host computer. This server manages interactions with the FPGA, including loading the 
DUT, providing stimulus to the design, and retrieving outputs from the design. 
 

The FPGA assumes responsibility for emulating the DUT by loading it into its 
programmable logic and communicating with the embedded server via high-speed AXI GPIO. Its 
flexibility allows it to emulate multiple DUTs simultaneously, further enhancing system speed. 

 

 
Figure 6: PyDVE FPGA Design with 4 of 7 DUTs 

 
Design Decisions 

Several hardware and software architectures were explored before arriving at the final 
architecture depicted above. One key consideration was determining where to run the testbench—
on the host CPU or the embedded CPU on the Kria board. Ultimately, running the testbench on 
the host system was chosen to reduce demands on the embedded hardware, potentially improving 



system speed and lowering costs. While this approach introduces some network delay, it was 
deemed a necessary tradeoff to achieve the desired performance. Additionally, utilizing a 
synthesizable testbench directly on the FPGA was considered but dismissed due to concerns about 
restricting the system's flexibility by requiring testbenches to be written entirely in a limited subset of 
synthesizable Python. 
 
Verification Process 

The PyDVE framework is presented to the verification engineer as a Python package, 
featuring a class called PyDVE for interacting with the DUT. This framework enables engineers to 
write verification testbenches within traditional Python software testing frameworks like unittest 
or pytest, interacting with the DUT as if it were a standard Python class. 
 
The typical verification workflow with PyDVE involves several steps: 
 
 Synthesizing the Design – Currently, no open-source tools exist for generating bitstreams 
for Xilinx FPGAs from HDL code. Hence, engineers are responsible for initially synthesizing their 
design using traditional synthesis tools like Xilinx Vivado. Once synthesized, the DUT is exported 
as a bitstream. Future work on the project will focus on integrating existing synthesis tools within 
the framework. 
 

Loading the Design - Next, engineers provide the PyDVE testing framework with the DUT, 
represented by the exported files containing synthesized SystemVerilog code and necessary 
metadata. These files are loaded onto the FPGA through the PyDVE package's sources decorator, 
which facilitates the transmission of the bitstream over the network connection to the embedded 
server for loading onto the FPGA. 
 

 
Figure 7: PyDVE code snippet of an ALU addition test. 

 Implementing and Running the Testbench – As mentioned prior, the PyDVE framework 
seamlessly integrates with existing Python testing frameworks like pytest and unittest. Running 



and developing Python testbenches should be familiar to engineers with a working knowledge of 
Python. Testbenches can make use of Python's extensive ecosystem of libraries for powerful, high-
level testing. The simplicity of interacting with the FPGA and DUT via a Python class abstraction 
allows engineers to write testbenches quickly and easily, with minimal understanding of the 
underlying system. 
 

In the code snippet above, testAdd() is an individual test vector within the 
TestArithmetic testbench, responsible for testing that an ALU correctly performed an addition 
operation. Within this test, self.dut is an object of type pydve.pydve. The self.dut object 
exposes all the input and output ports of the devices-under-test. Input ports are driven by the 
verification engineer through the @=  and <<= operators, which assign values to the input ports 
combinatorically and sequentially. This can be seen on lines 18-20. Whenever the input ports of the 
self.dut are assigned to, the values are collected and driven to the embedded server in the form of 
a high-level transaction, which is then driven to the FPGA as individual RTL signals. Every time the 
DUT is updated on the FPGA, the resultant output signals are read by the embedded server as RTL 
signals, which are then collected into a high-level transaction and sent back to the host computer. 
The verification engineer can then check the validity of these output signals within the testbench, by 
accessing the output ports of the self.dut object. This can be seen on lines 23-24. 
  
 By abstracting the complexity of interacting with the FPGA and DUT into a Python class, 
PyDVE enables the rapid development of Python testbenches, leveraging the language's extensive 
ecosystem for powerful testing capabilities. Examples in the source code demonstrate the use of 
Python testbenches, including leveraging the numpy package for checking the performance of a 
matrix multiplier module and utilizing the hypothesis package for generating constrained random 
stimulus. 
 
5  EVALUATION 
 To assess the performance of the system, PyDVE was compared against traditional simulation 
tools, as well as open-source alternatives, using either Python and SystemVerilog testbenches 
depending on the tool. These evaluations were conducted on a matrix multiplier module obtained 
from cocotb's source code as a motivating example, varying the number of test vectors from 100 
to 100,000 cases. This approach provides insights into the runtime of each tool and how their 
performance scales with longer testbenches. The following graphs depict the total testbench runtime 
and test vector throughput for PyDVE and various simulation tools. Notably, the data do not include 
synthesis times for the modules from Vivado. Detailed data and methodology can be found in 
tables 3 and 4 in the appendix. 
 



 
Figure 8: Comparison of Total Testbench Time for Different Simulators. See Table 3 in Appendix.  

 
Figure 9: Comparison of Test Vector Throughput for Different Simulators. See Table 4 in Appendix. 

 
Initial Performance Evaluation 

During testing, the initial version of PyDVE, operating in parallel with 7 DUTs, exhibited 
slower performance compared to Icarus Verilog and cocotb across all scenarios. Additionally, 
PyDVE lagged behind Vivado Xsim for 10,000 and 100,000 test vectors. This trend is also evident in 
the test vector throughput analysis, where PyDVE underperformed relative to cocotb and Icarus 
Verilog and exhibited inferior scalability compared to Vivado Xsim with higher numbers of test 
vectors. These findings suggest potential room for performance improvements, which will be 
further discussed in subsequent sections. 
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Figure 10: PyDVE Runtimes Vs. Number of Devices Under Test. See Table 5 in Appendix. 

 
Performance Scaling with Parallelism 

A study of PyDVE's performance with varying levels of parallelism reveals insights into its 
scalability. As discussed in the "Architecture" section, PyDVE supports testing parallelism with 
multiple DUTs on the same FPGA. Increasing the number of DUTs leads to a decrease in total 
testbench time due to enhanced test vector throughput with greater parallelization. However, there 
is a corresponding rise in PyDVE's overhead as the system must initialize and manage more devices. 
Consequently, the system achieves peak performance when operating with 5 devices under test, 
striking a balance between the performance overhead of managing multiple devices and the 
throughput gains from increased parallelization. It's worth noting that the Kria system encountered 
limitations when managing more than seven devices, indicating potential opportunities for 
performance enhancements in the design of the embedded hardware server. 
 
6  CONCLUSION 
 While PyDVE did not immediately surpass other simulation methods as anticipated, I remain 
optimistic about its potential based on the promising results observed. As highlighted in the 
evaluation section, several bottlenecks significantly hinder the overall system speed, particularly 
within the embedded server on the Kria platform. The server, developed in Python for rapid 
prototyping, may not be the most efficient option. I believe that transitioning to a low-level language 
tailored to the hardware constraints of the Kria platform could better leverage the FPGA's 
capabilities and enhance test vector throughput. Moreover, while supporting off-the-shelf hardware 
is essential, there's an opportunity to design specialized hardware for the framework, unrestricted by 
the limitations of the Kria platform. 

 
In addition to addressing performance concerns, I intend to streamline the testbench 

development process by integrating PyDVE with other verification software. Plans include integrating 
synthesis tools like Xilinx Vivado or Yosys into the platform for automated bitstream generation. 
This would simplify the workflow for verification engineers, allowing them to provide their HDL 
code to the system without the need for separate bitstream compilation. Furthermore, future 
versions of PyDVE aim to support running cocotb testbenches, creating a unified environment for 
executing Python testbenches in both emulation and simulation. Such flexibility would empower 
engineers to fully capitalize on the benefits of both emulation and simulation. 
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Throughout the development of PyDVE, I gained valuable insights into design verification 

tools, particularly open-source options. I firmly believe that nurturing the growth of open-source 
tools is pivotal for the future of digital hardware design. These tools introduce competition and 
innovation to an industry dominated by a few major vendors. Cocotb, Firesim, and PyDVE hold 
the potential to enhance efficiency in digital design and verification, crucial as designs continue to 
grow in complexity.  
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8  APPENDIX 
Performance Comparison (Figure 8,9) 
Performance tests in tables 3 and 4 were run on Intel Core-i7 with 32 GB RAM.  
Vivado synthesis for 7-DUTs took 24 minutes. 
 
 

Num Tests Icarus Verilog Cocotb PyDVE 7 DUTs Vivado Xsim 
100 0.06 0.41 14.65 30.00 

1000 0.51 4.15 27.25 30.00 
10000 5.22 40.19 131.79 35.00 

100000 55.52 760.49 1027.46 63.00 
Table 3: Total Testbench Time (seconds) vs. Number of Test Vectors. 

 
Num Tests Icarus Verilog Cocotb PyDVE 7 

DUTs 
Vivado Xsim 

100 1612.90 243.90 50.34 3.33 
1000 1972.39 240.96 92.12 33.33 

10000 1914.98 248.82 92.35 285.71 
100000 1801.15 131.49 97.33 1587.30 

Table 4: Test Vector Throughput (tests/second) vs. Number of Test Vectors.  

Parallelism Assessment (Figure 10) 
Parallelism assessments in table 5 were run on Apple M1 with 16 GB RAM.  
Vivado synthesis for 7-DUTs took 24 minutes on Intel Core-i7 with 32 GB RAM. 
 

Num DUVs Testbench Duration (s) Total Time (s) Overhead (s) 
1 34.5515757 50.1891054 15.63752971 
2 18.2105112 32.5236315 14.31312038 
3 12.1188674 30.2632 18.14433262 
4 10.0755533 28.2098582 18.13430492 
5 8.71449667 24.6855627 15.97106604 
6 8.11689833 25.3971535 17.28025513 
7 7.3822885 27.9552509 20.57296242 
Table 5: PyDVE Timing Breakdown (s) per Number of Test Vectors.  


