SINBA EXPLORING WHEREVER THE

LIGHT TOUCHES

Cal Poly SLO Capstone Fall 2023 Alpha Presentation Braedan Kennedy, Curtis Bucher, Sepp Williams, Ian Beck, Luis David Garcia, Brian Nguyen, and Tyler Bovenzi (Client)

Presentation Overview

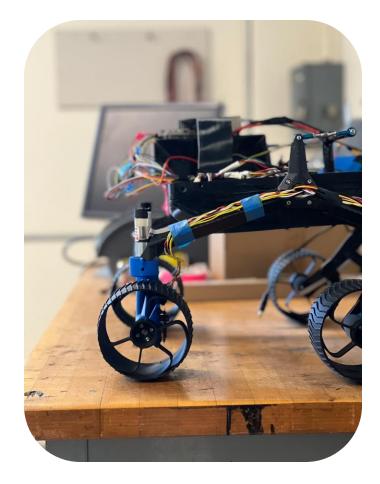
01.

Introduction

Meet the Team, Mission Statement, Objectives and Deliverables

02. Project Design

04


Archetypes and Use Cases, Engineering Specifications, Design Development

03. Project Management

> Gantt Chart, Evaluation and Testing, Product Cost

Conclusion

System Summary, Acknowledgments, Questions

01.

Introduction

Meet the Team, Mission Statement, Objectives and Deliverables

Meet the Team

Braedan Kennedy Project Lead, Software

lan Beck Digital Design

Curtis Bucher Digital Design

Luis David Garcia Client Laison, Software

Sepp Williams Hardware

Brian Nguyen Software

Client

Tyler Bovenzi is a Cal Poly Alumni who graduated with a degree in Computer Engineering

He worked on the *GoScout* project -- a prior version of the SIMBA rover

Mission Statement

"The **SIMBA project** aims to lower the barrier to entry for rover **development** by building on previous generations of Cal Poly rover projects"

-SIMBA Team

Objectives

Hardware Create PCB with KRIA SoM

Digital Design Port and refactor Verilog motor control code from GoScout project

Software Implement IMU and GPS from GoScout project

Deliverables

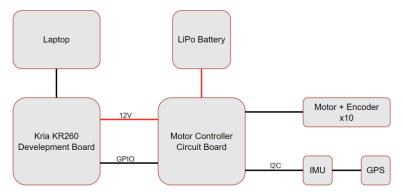
Hardware Fabricated and tested PCB

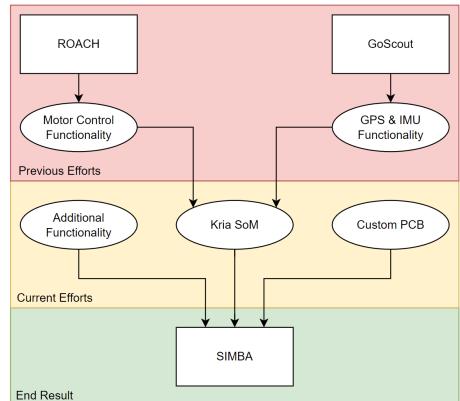
Digital Design Integration of motor drivers and encoders


Software Creation and verification of functioning C++ GPS and IMU libraries

Design

Archetypes and Use Cases, Engineering Specifications, Design Development

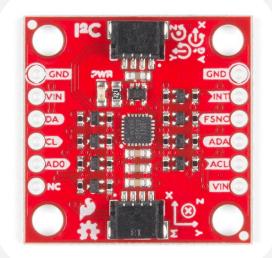

¥


Marketing / Engineering Requirements

Spec #	Marketing	Engineering Parameter	Engineering Requirements (with units)	Tolerance	Risk	Compliance
1	Efficient	Energy Consumption	4 W	Avg	М	Α, Τ
2	Accurate	GPS Positional Accuracy	2.5 M	Max	М	Α, Τ
3	Accurate	Motor Control Accuracy	3000 pulses per rotation	None	М	Α, Τ
4	Durable	Part Expected Lifetime	1 year	Min	Н	А
5	Functional	Features Implemented	All legacy ROACH features	Min	М	A, S, T
6	Cheap	Production Cost	\$500	Max	М	А
7	Environmental	Emissions, Supply Chain	Zero Rover Emissions, Limited Battery Size (power efficiency)	Max	L	Α, Τ

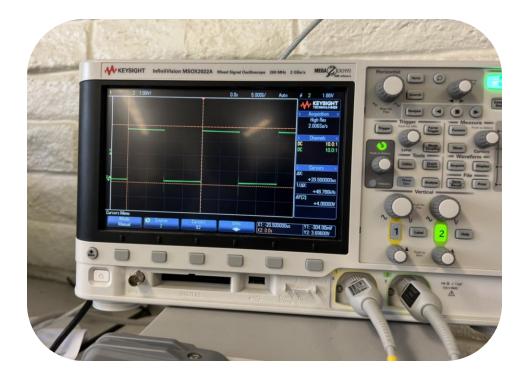
Design Development Overview

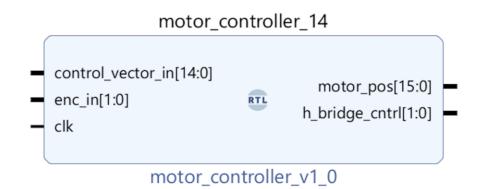
- KRIA SoM Both the processor used to run rover software and FPGA used for offloading motor control and other intensive workloads
- GPS & IMU Incorporate coordinate-based movements of the rover
- PCB Place the entire system on a single PCB


SAM-M8Q GPS

- 14 data points to determine SIMBA location (Longitude, Latitude, Height Above Sea Level, etc.)
- Power consumption: 29 mA @ 3.3V (Continuous) [5]
- I2C Communication

ICM-20948 IMU

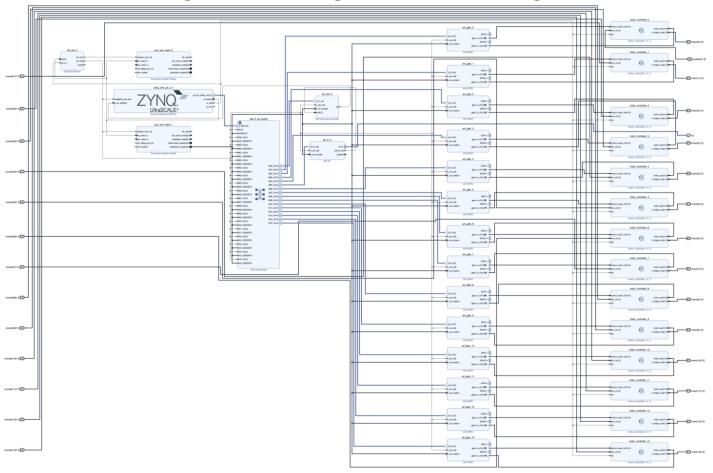

- 9-Axis Inertial Measurement Unit
- I2C Communication
- Low power at 2.5 mW [6]


Kria Development & Motor Controllers

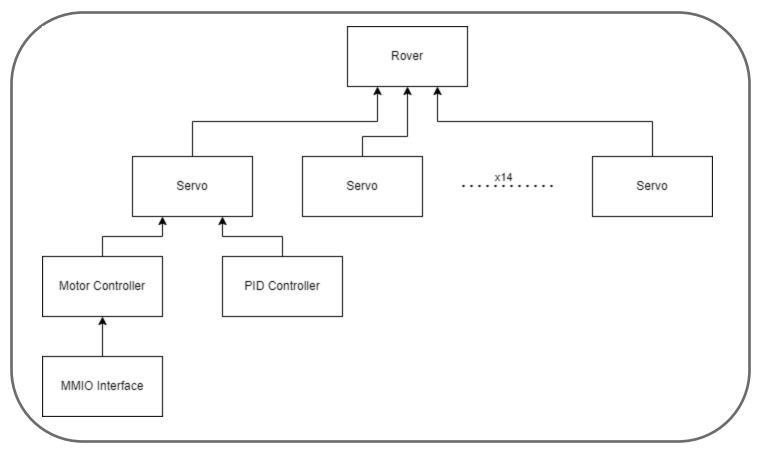
PWM Generator -Receives a duty cycle value then generates a pulse-width modulated signal

H-Bridge Decoder -Decodes direction and duty cycle values into H-Bridge compatible control signals

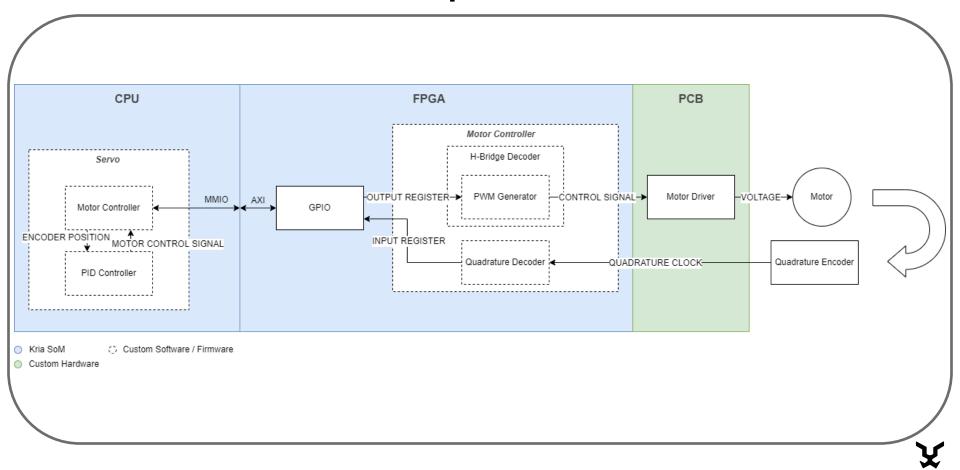
Kria Development & Motor Controllers


Software (C) -

Provides a software interface to the motor controller hardware, allowing users to configure duty cycle, direction, and retrieve encoder position


Quadrature Decoder -

Consumes quadrature signals from motor encoders and uses them to determine the current position of the motor


Digital Design Block Diagram

Software (C) Design Block Diagram

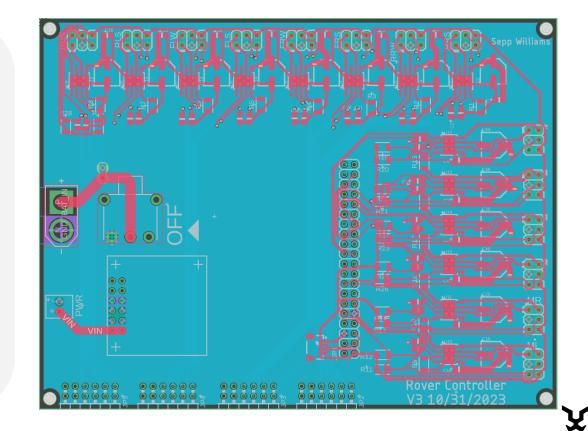
Closed Loop Motor Control

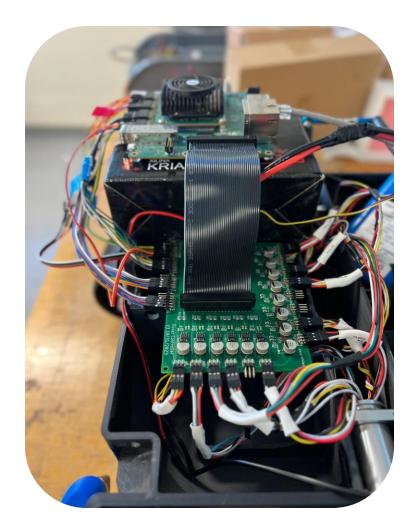
Motor Control PCB Design

14x motor controllers

- 10x movement control
- 4x arm control

4 Layer PCB


- 2 signal layers
- 1 motor voltage plane
- 1 ground plane


12V Buck Converter

- Powers Kria KR260
- 3.3V from Kria KR260

Interfaces

- Raspberry Pi HAT header
- 4x PMOD connectors
- I2C output connector
- Battery connector
- Power Switch

Motor Control PCB Integration

Power Conversion Validation

- Tested 12V conversion prior to initial Kria KR260 connection
- Validated 3.3V and 5V return voltages from Kria KR260

Individual Motor Control

 Ensured full motor control on each motor individually from a known working Kria FPGA implementation

Full Motor Control

 Expanded to control to all motors within the FPGA and mapped to available GPIO

DEMONSTRATION

ΤΙΜΕ

X

GPS Demo

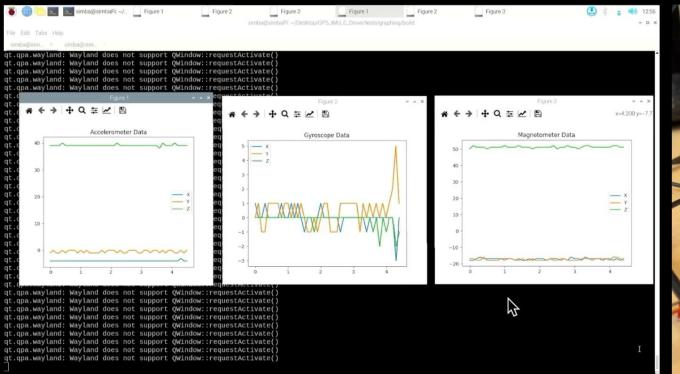
simba@simbaPi: ~/Desktop/GPS_IMU_C_Driver

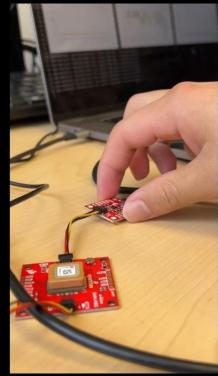
(2) 岩 🛜 📣

File Edit Tabs Help

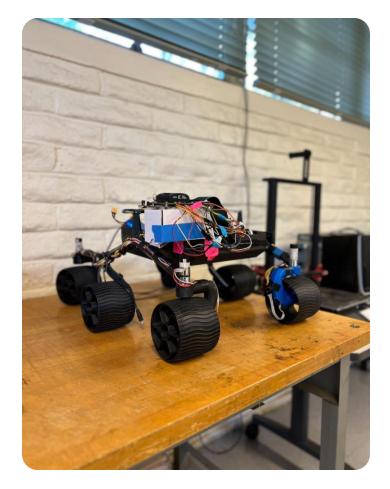
simba@simbaPi:-/Desktop/GPS_IMU_C_Driver \$./gps_map_test Length of all_coordinates: 1 Coordinates: 35.300037, -120.660987

(eom:9365): EOM-WARNING **: Error loading Peas typelib: Typelib file for namespace 'Peas', version '1.0' not found


(eom:9365): EOM-WARNING **: Error loading PeasGtk typelib: Typelib file for namespace 'PeasGtk', version '1.0' not found


Length of all_coordinates: 2 Coordinates: 35.300023, -120.660982

(eom:9492): EOM-WARNING **: Error loading Peas typelib: Typelib file for namespace 'Peas', version '1.0' not found


(eom:9492): EOM-WARNING **: Error loading PeasGtk typelib: Typelib file for namespace 'PeasGtk', version '1.0' not found

IMU Demo

Rover TIME

03. Project Management

Gantt Chart, Evaluation and Testing, Product Cost

Gantt Chart

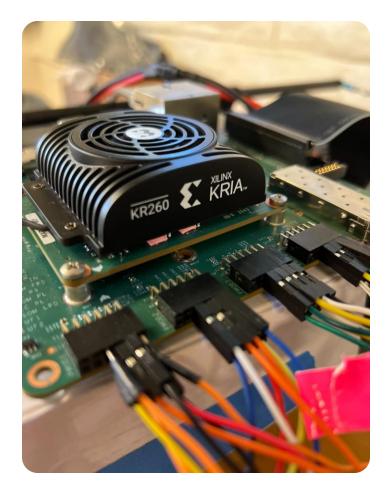
er	Octo	ber		November	December	January	February	March	April		May
18 25	2	9 16	23 30 (5 13 20 27	11 18 25	1 8 Jan 11	Feb 7 12 19 26	4 11 18	25 1 8	15 22 3	29 6 13
(one Res	earch FPGA	WIKI t Encoders/Decode Constraints to Kria PWM generator	In Progress Get a group Digital Design C Progress @ Get a group design on Kria	Create a bootable Peta ode	Progress () Get I2C linux image for I2C Bus n hardware and software velopment	arted Integrate			y on Rover
	• Dor	~	• Done 🛛 Fi	nish PCB Schemat		ematic	ed Integrate Kria SoM	into PCB			
		Setup Kria Done U Done Kri	a Dev Enviro Ipdate boot a OS Installa	nment firmware Done ation WIKI	Fix the Memory Leak	ks in IMU/GPS	Not Started	i Add Movemen	nt Functionality	Based On GP	'S/IMU Data
	• D	one Find	d SMBus2 lit	o for C							V
			• [Done GMS/IMU s	etup on RPi						W

Testing and Evaluation

KRIA SoM

Wrote test program to exercise full functionality of SIMBA's ten movement motors

PCB


PCB used in test program to control each of SIMBA's ten movement motors

GPS & IMU

Employed functional integration testing by creating real-time plots to verify GPS & IMU data

Product Cost

Component	Cost per Part	# of Parts	Total
PCB Manufacturing	\$ 5.92	1	\$ 5.92
0.1uF 50V Capacitor	\$ 0.10	42	\$ 4.20
22uF 63V Capacitor	\$ 1.27	14	\$ 17.78
30K Resistor	\$ 0.10	14	\$ 1.40
2K Resistor	\$ 0.48	14	\$ 6.72
DRV8871 Motor Controller	\$ 2.24	14	\$ 31.36
2x3 Pin Header	\$ 0.15	14	\$ 2.16
2x6 Pin Header	\$ 0.29	4	\$ 1.14
2.1mm Power Plug	\$ 5.00	1	\$ 5.00
40 Pin Raspberry PI HAT Header	\$ 4.52	1	\$ 4.52
XT60 Battery Connector	\$ 1.50	1	\$ 1.50
QWIIC Connector 4-Pin	\$ 0.56	1	\$ 0.56
Slide Switch 5A 120V	\$ 3.45	1	\$ 3.45
Pololu 12V 4.5A Buck Converter	\$ 24.95	1	\$ 24.95
Kria KR260 Robotics Starter Kit	\$ 349.00	1	\$ 349.00
Jumper Wire Male to Female 6" 28AWG Bulk	\$ 1.95	1	\$ 1.95
			\$ 461.61

Conclusion

System Summary, Acknowledgments, Questions

System Summary

Hardware

- Integrated of all 14 motor drivers and encoders
- Achieved the digital design deliverable

Firmware

- Fabricated and tested PCB
- Achieved the hardware deliverable

Software

- Created and verified functioning C++ GPS and IMU libraries
- Achieved the software deliverable

Acknowledgements

THANK YOU

Any Questions?

Appendix

References

- [1] B. Nguyen, B. Kennedy, C. Butcher, J. Williams, L. Garcia, I. Beck, "Solar Autonomous ROACH Background Research," <u>https://tinyurl.com/2erhdpp5</u> (accessed Oct. 26, 2023)
- [2] L. La Rocca, Melopero SAM-M8Q Arduino Library, https://github.com/melopero/Melopero SAM-M8Q/tree/master (accessed Oct. 26, 2023).
- [3] B. Alsadik, "Kalman filter," Kalman Filter An Overview, <u>https://www.sciencedirect.com/topics/earth-and-planetary-sciences/kalman-filter</u> (accessed Oct. 26, 2023).
- [4] B. Nguyen, B. Kennedy, C. Butcher, J. Williams, L. Garcia, I. Beck, "Archetypes and Use Cases," <u>https://tinyurl.com/4k2sk4a3</u> (accessed Oct. 26, 2023)
- 5. [5] "SAM-M8Q module Easy-to-use u-blox M8 GNSS antenna module Smart antenna module for easy
- 6. and reliable integration." Accessed: Dec. 05, 2023. [Online]. Available: Datasheet for GPS
- [6] "ICM-20948 Datasheet," *TDK InvenSense*. Accessed: Dec. 05, 2023. [Online].
 Available: <u>Datasheet for IMU</u>