
2024 Computer Engineering Senior Project

PyDVE: An Open-Source Python-Based Design Verification

Framework for RTL Emulation

Curtis Bucher
March 2024

Computer Engineering, Cal Poly San Luis Obispo

1 INTRODUCTION

In the digital hardware development field, ensuring the functionality of a design is crucial
before moving to fabrication. This process of functional design verification detects and rectifies any
issues prior to manufacturing, thereby reducing the risk of costly errors. However, this verification
process is both complex and resource-intensive, consuming an estimated 70% of time and resources
in the digital design process and creating a bottleneck on the speed that new products can be
brought to market [1]. As hardware complexity continues to grow exponentially, finding efficient
and cost-effective verification methods becomes increasingly important.

 To address this challenge, there is a broad effort to develop tools and frameworks that
streamline the verification process. Broadly, these systems fall into two categories: simulation and
emulation. I will further draw a distinction between tools that are available from traditional “Big 3”
EDA vendors, Cadence, Synopsis, and Siemens, with newer, open-source tools that are beginning
to gain traction in the functional verification landscape.

 This paper introduces a novel verification framework that strives to combine the speed of
traditional emulation tools with the power, ease, and flexibility of the Python ecosystem. Notably,
this framework is open-source and utilizes inexpensive off-the-shelf hardware, eliminating the high
costs associated with traditional emulation platforms.

 The paper also explores the advantages of this framework, highlighting its flexibility and
accessibility compared to conventional emulators. Additionally, potential performance
improvements over existing simulation tools are investigated.

2 BACKGROUND
 Broadly, functional design verification deals with two questions: are two models of the
design under verification equivalent, and does a model of the design operate correctly [2]? This is
analogous to writing unit tests in software engineering. To answer these questions for a hardware
design, it is necessary to replicate the behavior of the design quickly and accurately, to see how it
behaves under different test stimulus. To reproduce the behavior of the hardware model, two main
methods are used: simulation and emulation. Each of these methods have different tools available
from the “Big 3” vendors, as well as open-source alternatives. We will explore the benefits and
drawbacks of each method in depth.

 These models are described using a traditional hardware description language (HDL) such as
SystemVerilog or VHDL. Additionally, module testbenches, used to drive input stimuli to the
design and verify its output accuracy, are traditionally written in SystemVerilog, often utilizing
Universal Verification Methodology (UVM) [1]. However, the increasing success of open-
source verification tools has introduced new languages for testbench design, with Python emerging

as a powerful, open-source alternative to traditional SystemVerilog testbench design, which we'll
delve into further.

Simulation

Simulation is the most common form of design verification [2]. High performance
simulators are available from most of the major EDA vendors, including Siemens ModelSim,
Synopsis VCS, and Xilinx Xsim [3] [4] [5]. These programs run on a traditional computer to
simulate the behavior of RTL hardware models. The objective with simulation is to enable quick and
flexible development of these testbenches.

Emulation

Emulation, on the other hand, utilizes a dedicated hardware emulator to mimic the behavior
of the RTL model without the need for compilation and execution on a conventional computer.
Although mapping an RTL design onto emulation hardware requires significant testbench overhead,
the hardware enables individual test vectors to run thousands of times faster, a desirable tradeoff for
larger designs with complex testbenches [2].

In most setups, a host computer manages the testbench and generates the test vectors to

keep the emulator occupied. Emulation tools and the necessary hardware are available from major
EDA vendors like Cadence Palladium Z1, Synopsys ZeBu, Siemens Veloce, and Xilinx
Alveo [6] [4] [3] [5]. However, these software tools and accompanying emulation hardware are often
prohibitively expensive, posing a barrier to entry for verification engineers seeking to leverage the
benefits of emulation.

Python

Python, as an open-source, general-purpose programming language, has gained traction in
testbench design alongside the increasing availability of open-source design verification tools, which
we'll explore later in more detail. Python testbenches offer advantages due to the language's
flexibility and ease of use compared to a traditional HDL like SystemVerilog or UVM. Python is
familiar to a larger pool of engineers, and its ecosystem provides access to numerous packages for
developing rich, powerful testbenches across a variety of domains [7]. In terms of language
complexity, Python is notably simpler, with only 23 keywords compared to SystemVerilog's 221
keywords [8].

Figure 1: http://www.fivecomputers.com/language-specification-length.html

3 RELATED WORK

Due to the expensive, closed source nature of the verification tooling from the big vendors,
and the success of the open-source software ecosystem, there has been a substantial effort in recent
years to develop a suite of open-source tools for digital hardware design, including a host of open-
source Verilog simulators and emulators. Some of these open-source simulation tools have
Python front-ends available, exposing the verification engineer to the flexibility and power of the
Python ecosystem.

Tool Open Source Simulation Emulation Python-based
Traditional Tools X X
Icarus Verilog X X

Cocotb X X X
Verilator X X
PyMTL X X X
Firesim X X

Table 1: Summary of Open-Source Verification Tools

Icarus Verilog
 Icarus Verilog is a free and open-source Verilog compiler, intended to generate high
performance code for back-end tools [9]. Although in development since 2000, it still exhibits
notable limitations compared to other simulators. Notably, Icarus Verilog lacks support for
SystemVerilog or UVM testbenches, which are the modern standard for complex testbench design,
limiting its utility within the industry.

Cocotb

Cocotb is another free and open-source digital logic verification framework, notable because
cocotb testbenches are written using the open-source Python programming language, rather than
SystemVerilog. Cocotb is not another simulator, but rather a Python frontend that supports
many existing simulators, including open-source solutions like Icarus Verilog, as well as closed
source alternatives like Synopsys VCS and Siemens Modelism. According to the documentation,
cocotb encourages the same philosophy of design reuse and randomized testing as UVM but
implemented in Python [7].

Figure 2: Sample cocotb code [8]

Verilator
Verilator claims to be the fastest Verilog/SystemVerilog simulator available,

outperforming many closed source commercial simulators by 200-1000x [10]. It achieves this by
compiling the Verilog or SystemVerilog module into an optimized, multithreaded model of the
design, which is then wrapped in a C++ or SystemC wrapper and compiled using traditional
compilers like GCC [10].

Despite its impressive performance and support for both SystemVerilog and Verilog,

Verilator lacks many features of traditional simulators and is primarily intended for high-speed
simulation and integration of SystemVerilog models with C code [10]. Furthermore, it does not
natively support Python testbenches and is not a supported backend of cocotb, limiting verification
engineers to Verilog and SystemVerilog testbenches.

Figure 3: Verilator Multithreaded Performance [11]

PyMTL
 PyMTL is a novel, free and open-source Python-based hardware generation, simulation, and
verification framework [12]. In the PyMTL workflow, hardware designs and their corresponding
testbenches are both defined using Python, gradually refined by the verification engineer. Once the
design is finalized, the PyMTL framework facilitates exporting the testbench and model as Verilog
code, compatible with traditional EDA tools.

Figure 4: PyMTL's workflow.

Firesim
Firesim serves as an open-source emulation alternative from UC Berkeley, utilizing general-

purpose FPGAs to accelerate the simulation process either locally or in the cloud using Amazon F1
instances. Testbenches within Firesim can be written using traditional Verilog or Chisel,
Berkeley’s hardware description language, and emulated at speeds ranging from 10s to 100s of MHz
[13]. However, while Firesim represents a significant advancement in the open-source hardware
movement, it is limited to testbenches written in Verilog or Chisel, thus precluding verification
engineers from leveraging the powerful Python ecosystem in their testbench designs.

4 DEVELOPMENT
PyDVE

Considering the popularity of Python-based simulation frameworks, and the remarkable
speedup of emulation offerings from traditional vendors, there is a notable lack of solutions for
running Python-based testbenches with emulation. PyDVE was developed to bridge this gap, offering
an open-source framework for running Python-based testbenches with emulation. The goal of
PyDVE is to combine the flexibility, ease-of-use, and extendibility of the Python ecosystem with the
speed benefits of a traditional emulation system.

 SYSTEMVERILOG PYTHON
SIMULATION Traditional Simulators,

Icarus Verilog
Cocotb

EMULATION Traditional Emulators,
Firesim

PyDVE

Table 2: The missing python-based emulation tool...

Architecture
 Since PyDVE relies on emulation to replicate the behavior of the design under test (DUT),
additional hardware is necessary for its operation. To ensure affordability and accessibility, a
hardware architecture utilizing readily available components was chosen. Specifically, the Kria
KV260 development board by Xilinx, priced under $400, was selected. This board features the
Zynq UltraScale+ MPSoC, integrating an ARM processor tightly coupled with a Zynq FPGA.

The choice of the Kria board is rooted in its support for the PYNQ framework, an open-source
project developed by AMD, which provides a Python software interface for interacting with FPGA
designs [14]. This compatibility ensures seamless integration with the PyDVE package, facilitating
efficient testing processes.

Figure 5: PyDVE Hardware and Software Architecture

 The system consists of a host computer connected to the Kria board via either a high-speed
network or a serial connection, enabling multiple Kria boards to connect simultaneously for
concurrent testing and a greater test throughput.

On the host CPU, engineers access the PyDVE Python package, facilitating the transmission
of the DUT to the development board and the transmission of transaction-level stimulus to the
emulator board.

Meanwhile, the Kria Board's embedded CPU operates a server, which awaits commands

from the host computer. This server manages interactions with the FPGA, including loading the
DUT, providing stimulus to the design, and retrieving outputs from the design.

The FPGA assumes responsibility for emulating the DUT by loading it into its
programmable logic and communicating with the embedded server via high-speed AXI GPIO. Its
flexibility allows it to emulate multiple DUTs simultaneously, further enhancing system speed.

Figure 6: PyDVE FPGA Design with 4 of 7 DUTs

Design Decisions

Several hardware and software architectures were explored before arriving at the final
architecture depicted above. One key consideration was determining where to run the testbench—
on the host CPU or the embedded CPU on the Kria board. Ultimately, running the testbench on
the host system was chosen to reduce demands on the embedded hardware, potentially improving

system speed and lowering costs. While this approach introduces some network delay, it was
deemed a necessary tradeoff to achieve the desired performance. Additionally, utilizing a
synthesizable testbench directly on the FPGA was considered but dismissed due to concerns about
restricting the system's flexibility by requiring testbenches to be written entirely in a limited subset of
synthesizable Python.

Verification Process

The PyDVE framework is presented to the verification engineer as a Python package,
featuring a class called PyDVE for interacting with the DUT. This framework enables engineers to
write verification testbenches within traditional Python software testing frameworks like unittest
or pytest, interacting with the DUT as if it were a standard Python class.

The typical verification workflow with PyDVE involves several steps:

 Synthesizing the Design – Currently, no open-source tools exist for generating bitstreams
for Xilinx FPGAs from HDL code. Hence, engineers are responsible for initially synthesizing their
design using traditional synthesis tools like Xilinx Vivado. Once synthesized, the DUT is exported
as a bitstream. Future work on the project will focus on integrating existing synthesis tools within
the framework.

Loading the Design - Next, engineers provide the PyDVE testing framework with the DUT,
represented by the exported files containing synthesized SystemVerilog code and necessary
metadata. These files are loaded onto the FPGA through the PyDVE package's sources decorator,
which facilitates the transmission of the bitstream over the network connection to the embedded
server for loading onto the FPGA.

Figure 7: PyDVE code snippet of an ALU addition test.

 Implementing and Running the Testbench – As mentioned prior, the PyDVE framework
seamlessly integrates with existing Python testing frameworks like pytest and unittest. Running

and developing Python testbenches should be familiar to engineers with a working knowledge of
Python. Testbenches can make use of Python's extensive ecosystem of libraries for powerful, high-
level testing. The simplicity of interacting with the FPGA and DUT via a Python class abstraction
allows engineers to write testbenches quickly and easily, with minimal understanding of the
underlying system.

In the code snippet above, testAdd() is an individual test vector within the
TestArithmetic testbench, responsible for testing that an ALU correctly performed an addition
operation. Within this test, self.dut is an object of type pydve.pydve. The self.dut object
exposes all the input and output ports of the devices-under-test. Input ports are driven by the
verification engineer through the @= and <<= operators, which assign values to the input ports
combinatorically and sequentially. This can be seen on lines 18-20. Whenever the input ports of the
self.dut are assigned to, the values are collected and driven to the embedded server in the form of
a high-level transaction, which is then driven to the FPGA as individual RTL signals. Every time the
DUT is updated on the FPGA, the resultant output signals are read by the embedded server as RTL
signals, which are then collected into a high-level transaction and sent back to the host computer.
The verification engineer can then check the validity of these output signals within the testbench, by
accessing the output ports of the self.dut object. This can be seen on lines 23-24.

 By abstracting the complexity of interacting with the FPGA and DUT into a Python class,
PyDVE enables the rapid development of Python testbenches, leveraging the language's extensive
ecosystem for powerful testing capabilities. Examples in the source code demonstrate the use of
Python testbenches, including leveraging the numpy package for checking the performance of a
matrix multiplier module and utilizing the hypothesis package for generating constrained random
stimulus.

5 EVALUATION
 To assess the performance of the system, PyDVE was compared against traditional simulation
tools, as well as open-source alternatives, using either Python and SystemVerilog testbenches
depending on the tool. These evaluations were conducted on a matrix multiplier module obtained
from cocotb's source code as a motivating example, varying the number of test vectors from 100
to 100,000 cases. This approach provides insights into the runtime of each tool and how their
performance scales with longer testbenches. The following graphs depict the total testbench runtime
and test vector throughput for PyDVE and various simulation tools. Notably, the data do not include
synthesis times for the modules from Vivado. Detailed data and methodology can be found in
tables 3 and 4 in the appendix.

Figure 8: Comparison of Total Testbench Time for Different Simulators. See Table 3 in Appendix.

Figure 9: Comparison of Test Vector Throughput for Different Simulators. See Table 4 in Appendix.

Initial Performance Evaluation

During testing, the initial version of PyDVE, operating in parallel with 7 DUTs, exhibited
slower performance compared to Icarus Verilog and cocotb across all scenarios. Additionally,
PyDVE lagged behind Vivado Xsim for 10,000 and 100,000 test vectors. This trend is also evident in
the test vector throughput analysis, where PyDVE underperformed relative to cocotb and Icarus
Verilog and exhibited inferior scalability compared to Vivado Xsim with higher numbers of test
vectors. These findings suggest potential room for performance improvements, which will be
further discussed in subsequent sections.

0.01

0.10

1.00

10.00

100.00

1,000.00

10,000.00

100 1000 10000 100000
Number of Test Vectors

Total Testbench Time (seconds)

Icarus Verilog

CocoTB

PyDVE 7 DUV

Vivado Xsim

1

10

100

1000

10000

100 1000 10000 100000
Number of Test Vectors

Test Vector Throughput (tests / second)

Icarus Verilog

CocoTB

PyDVE 7 DUV

Vivado Xsim

Figure 10: PyDVE Runtimes Vs. Number of Devices Under Test. See Table 5 in Appendix.

Performance Scaling with Parallelism

A study of PyDVE's performance with varying levels of parallelism reveals insights into its
scalability. As discussed in the "Architecture" section, PyDVE supports testing parallelism with
multiple DUTs on the same FPGA. Increasing the number of DUTs leads to a decrease in total
testbench time due to enhanced test vector throughput with greater parallelization. However, there
is a corresponding rise in PyDVE's overhead as the system must initialize and manage more devices.
Consequently, the system achieves peak performance when operating with 5 devices under test,
striking a balance between the performance overhead of managing multiple devices and the
throughput gains from increased parallelization. It's worth noting that the Kria system encountered
limitations when managing more than seven devices, indicating potential opportunities for
performance enhancements in the design of the embedded hardware server.

6 CONCLUSION
 While PyDVE did not immediately surpass other simulation methods as anticipated, I remain
optimistic about its potential based on the promising results observed. As highlighted in the
evaluation section, several bottlenecks significantly hinder the overall system speed, particularly
within the embedded server on the Kria platform. The server, developed in Python for rapid
prototyping, may not be the most efficient option. I believe that transitioning to a low-level language
tailored to the hardware constraints of the Kria platform could better leverage the FPGA's
capabilities and enhance test vector throughput. Moreover, while supporting off-the-shelf hardware
is essential, there's an opportunity to design specialized hardware for the framework, unrestricted by
the limitations of the Kria platform.

In addition to addressing performance concerns, I intend to streamline the testbench

development process by integrating PyDVE with other verification software. Plans include integrating
synthesis tools like Xilinx Vivado or Yosys into the platform for automated bitstream generation.
This would simplify the workflow for verification engineers, allowing them to provide their HDL
code to the system without the need for separate bitstream compilation. Furthermore, future
versions of PyDVE aim to support running cocotb testbenches, creating a unified environment for
executing Python testbenches in both emulation and simulation. Such flexibility would empower
engineers to fully capitalize on the benefits of both emulation and simulation.

0
10
20
30
40
50
60

0 1 2 3 4 5 6 7 8

Se
co

nd
s

Number of Devices Under Test

PyDVE Runtimes vs Number of DUTs

Testbench Duration Total Time Overhead

Throughout the development of PyDVE, I gained valuable insights into design verification

tools, particularly open-source options. I firmly believe that nurturing the growth of open-source
tools is pivotal for the future of digital hardware design. These tools introduce competition and
innovation to an industry dominated by a few major vendors. Cocotb, Firesim, and PyDVE hold
the potential to enhance efficiency in digital design and verification, crucial as designs continue to
grow in complexity.

7 BIBLIOGRAPHY

[1] A. Molina, "Functional Verification: Approaches and Challenges," Latin American Applied

Research, vol. 37, no. 1, 2007.
[2] Synopsis Inc, "Functional Verification 2003: Technology, Tools and Methodology," IEEE

Xplore, 2003.
[3] Siemens, "Verification and Validation," 2024. [Online]. Available:

https://eda.sw.siemens.com/en-US/ic/verification-and-validation/. [Accessed 11 03 2024].
[4] Synopsis, "Verification Family," 2024. [Online]. Available:

https://www.synopsys.com/verification.html. [Accessed 11 03 2024].
[5] Advanced Micro Devices, "Vivado Overview," 2024. [Online]. Available:

https://www.xilinx.com/products/design-tools/vivado.html. [Accessed 11 03 2024].
[6] Cadence, "Cadence Verifcation," 2024. [Online]. Available:

https://www.cadence.com/en_US/home/tools/system-design-and-verification.html.
[Accessed 11 03 2024].

[7] Cocotb, "Cocotb Documentation," 2023. [Online]. Available:
https://docs.cocotb.org/en/stable/. [Accessed 09 03 2024].

[8] B. Rosser, "CocotbL A Python-based digital logic verification framework," University of
Pennsylvania.

[9] S. Williams, "Icarus Verilog," 2019. [Online]. Available: https://steveicarus.github.io/iverilog/.
[Accessed 09 03 2024].

[10] Veripool, "Welcome to Verilator," Veripool, 2024. [Online]. Available:
https://veripool.org/verilator/. [Accessed 09 03 2024].

[11] W. Snyder, "Verilator: Your Big 4th Simulator: 2019 Intro and Roadmap," Chips Alliance,
2019.

[12] S. Jiang, C. Torng and C. Batten, "An Open-Source Python-Based Hardware Generation,
Simulation, and Verification Framework," in Workshop on Open-Source EDA Technology, Ithaca,
NY, 2018.

[13] S. Karandikar, H. Mao, D. Kim, D. Biancolin, A. Amid, D. Lee, N. Pemberton, E. Amaro, C.
Schmidt, A. Chopra, Q. Huang, K. Kovacs, B. Nikolic, R. Katz, J. Bachrach and K. Asanovic,
"FireSim: FPGA-Accelerated Cycle-Exact Scale-Out System Simulation in the Public Cloud,"
in ACM/IEEE International Symposium on Computer Architecture, Berkeley, CA, 2018.

[14] Advanced Micro Devices Inc, "PYNQ: Python productivity for Adaptive Computing
platforms," 2022. [Online]. Available: https://pynq.readthedocs.io/en/latest/#. [Accessed 11
03 2024].

8 APPENDIX
Performance Comparison (Figure 8,9)
Performance tests in tables 3 and 4 were run on Intel Core-i7 with 32 GB RAM.
Vivado synthesis for 7-DUTs took 24 minutes.

Num Tests Icarus Verilog Cocotb PyDVE 7 DUTs Vivado Xsim
100 0.06 0.41 14.65 30.00

1000 0.51 4.15 27.25 30.00
10000 5.22 40.19 131.79 35.00

100000 55.52 760.49 1027.46 63.00
Table 3: Total Testbench Time (seconds) vs. Number of Test Vectors.

Num Tests Icarus Verilog Cocotb PyDVE 7

DUTs
Vivado Xsim

100 1612.90 243.90 50.34 3.33
1000 1972.39 240.96 92.12 33.33

10000 1914.98 248.82 92.35 285.71
100000 1801.15 131.49 97.33 1587.30

Table 4: Test Vector Throughput (tests/second) vs. Number of Test Vectors.

Parallelism Assessment (Figure 10)
Parallelism assessments in table 5 were run on Apple M1 with 16 GB RAM.
Vivado synthesis for 7-DUTs took 24 minutes on Intel Core-i7 with 32 GB RAM.

Num DUVs Testbench Duration (s) Total Time (s) Overhead (s)
1 34.5515757 50.1891054 15.63752971
2 18.2105112 32.5236315 14.31312038
3 12.1188674 30.2632 18.14433262
4 10.0755533 28.2098582 18.13430492
5 8.71449667 24.6855627 15.97106604
6 8.11689833 25.3971535 17.28025513
7 7.3822885 27.9552509 20.57296242
Table 5: PyDVE Timing Breakdown (s) per Number of Test Vectors.

