
Alpha Design Report 
 

S.I.M.B.A. Team  12/10/2023 Professor Murray 

 

Ian Beck 

Curtis Bucher 

Luis David Garcia 

Braedan Kennedy 

Brian Nguyen  

Sepp Williams  

Tyler Bovenzi – Client



   
 

 
  |   1 

Table of Contents 

1 Introduction ...................................................................................................................................................... 3 

1.1 Project Overview ................................................................................................................................................. 3 

1.2 Justification and Motivation ............................................................................................................................... 3 

1.3 Clients and Customers ........................................................................................................................................ 3 
Client .................................................................................................................................................................... 3 
Client Archetypes ................................................................................................................................................. 4 

1.4 Stakeholders ....................................................................................................................................................... 4 

1.5 Framed Insights and Opportunities .................................................................................................................... 4 
Client-Centric Insights .......................................................................................................................................... 4 
Community Partners and Stakeholder Perspectives ............................................................................................ 5 

1.6 Goals and Objectives .......................................................................................................................................... 5 
Project Goals ........................................................................................................................................................ 5 
Specific Objectives ............................................................................................................................................... 6 

1.7 Outcomes and Deliverables ................................................................................................................................ 6 

2 Background Research ........................................................................................................................................ 8 

2.1 Introduction ........................................................................................................................................................ 8 

2.2 PCB Design and Integration ................................................................................................................................ 8 

2.3 Kria KR260 Development and Integration .......................................................................................................... 8 

2.4 GPS and IMU Development and Integration ...................................................................................................... 9 

3 Marketing and Customer Requirements .......................................................................................................... 11 

3.1 Project Goals ..................................................................................................................................................... 11 

3.2 Marketing and Customer Requirements Table ................................................................................................. 11 

3.3 Testing Plan ...................................................................................................................................................... 12 

3.4 Customer Archetypes and Use Types ................................................................................................................ 12 

3.5 Marketing Data Sheet ...................................................................................................................................... 13 

4 Design Development ....................................................................................................................................... 14 

4.1 Hardware Development  ................................................................................................................................... 14 

4.2 Digital Design Development ............................................................................................................................. 17 

4.3 Software Development ..................................................................................................................................... 19 
Closed Loop Motor Control ................................................................................................................................ 19 
GPS and IMU ...................................................................................................................................................... 22 
PetaLinux ............................................................................................................................................................ 24 

5 Management Plan ........................................................................................................................................... 26 



   
 

 
  |   2 

5.1 Development Teams ......................................................................................................................................... 26 

5.2 Management Positions ..................................................................................................................................... 27 

6 Project Schedule  ............................................................................................................................................. 28 

7 Appendices ...................................................................................................................................................... 30 

7.1 Accelerometer Data Plot .................................................................................................................................. 30 

7.2 Gyroscope Data Plot ......................................................................................................................................... 30 

7.3 Magnetometer Data Plot ................................................................................................................................. 31 

7.4 Bill of Materials ................................................................................................................................................ 31 

8 Sources ............................................................................................................................................................ 33 

 

 

 

  



   
 

 
  |   3 

1 Introduction 
 

1.1 Project Overview 
Our computer engineering capstone project, originally named Rover on A Chip (ROACH) and now 
rebranded as Solar Integrated MoBile Automaton (SIMBA), represents a groundbreaking endeavor in the 
realm of autonomous rover technology, guided by the expertise of our client, Tyler Bovenzi. This venture 
signifies a substantial leap forward in rover capabilities compared to preceding projects. At the heart of 
our mission lies the seamless integration of the powerful Kria K26 System-on-Module (SoM). Achieving 
this milestone involves a multi-faceted approach, including the pivotal task of migrating the Verilog 
firmware from the previously employed PYNQ-Z1 Field-Programmable-Gate-Array (FPGA) to the new 
platform. This endeavor also encompasses the comprehensive reconfiguration and expansion of the 
accompanying C code, essential for interfacing with and governing the FPGA. The transition to the Kria 
K26 SoM is the development of a customized printed circuit board (PCB), meticulously engineered to 
house both the SoM and supporting electronics within a single, cohesive unit. Fueled by innovation and a 
commitment to cost-effectiveness, the finalized SIMBA platform is set to establish precedence in a new 
era of potential in autonomous rover technology. 
 

1.2 Justification and Motivation 
The space exploration industry, particularly focused on Mars, has become increasingly important in 
present-day society. The imperative for cost-effective vehicles capable of uncovering new scientific 
insights propels the SIMBA team towards improving the existing space rover to enhance efficiency and 
functionality. With the upcoming launch window to Mars in 2026, the team is focused on transitioning 
the rover system architecture from a developmental stage to a fully deployable vehicle for exploration. 
As a cohesive team comprising software, computer, and hardware engineers, we are excited to apply our 
skills toward innovative rover technology. 
 

1.3 Clients and Customers 
Client 
The SIMBA capstone project benefits significantly from the involvement of Tyler Bovenzi as its client. 
Tyler's unique background as a foundational member of the original ROACH project brings an exceptional 
advantage to our team. His comprehensive experience, having successfully completed his capstone and 
senior project on the rover, encompasses a broad spectrum of skills including software development, 
digital design, and PCB design. This breadth of expertise provides the SIMBA team with direct access to a 
wealth of knowledge, particularly in navigating the challenges inherent in advancing the SIMBA rover. 
Furthermore, the SIMBA rover project is a collaborative endeavor that extends beyond a single team. It 
involves the concerted efforts of two additional mechanical engineering teams, bringing the total team 
count to fifteen. These include an Arm team, tasked with the development of the rover's arm, and a Vision 
team, dedicated to the computer vision aspects of the rover. Together, these teams play a crucial role in 
the collection and identification of Mars space capsules. Guiding this multifaceted collaboration is 
Professor Murray, also referred to as client M. Professor Murray's role is pivotal in facilitating a seamless 
exchange of knowledge and expertise among the teams. This collaborative framework significantly 
augments the capabilities of the SIMBA team, enriching their collective skill set and enhancing their 
potential for achieving the project's objectives successfully. This synergy is instrumental in driving the 
project towards its goal – the proficient and innovative development of the SIMBA rover. 
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Client Archetypes 
The SIMBA team has identified three distinct customer profiles. The first category encompasses space 
agencies such as NASA and SpaceX, spanning both public and private sectors. For these space agencies, 
the SIMBA rover serves as an economical vehicle for space exploration and a versatile development 
platform. Despite often operating with billion-dollar budgets, these organizations find that integrating and 
testing new hardware and software components on a cost-effective rover is a notably more budget-
friendly alternative to working directly with expensive production hardware. The second customer profile 
consists of universities seeking to harness the potential of the SIMBA rover for robotics courses and 
research. Within the academic realm, students gain the opportunity to delve into various disciplines, 
including software, digital design, PCB design, power, and mechanical engineering. On the research front, 
both students and professors can utilize the rover for conducting driving tests and developing 
components, whether related to motors, architecture, or any other aspect. This eliminates the need to 
construct a rover from the ground up, providing a pre-built development platform for rapid and cost-
effective progress. The third customer archetype pertains to the military, which could potentially reap 
benefits from the SIMBA rover, particularly in executing hazardous material missions and reconnaissance. 
The incorporation of an arm into the rover enhances its capabilities for these tasks. Once again, cost-
effectiveness plays a pivotal role, as the replaceability of the rover helps mitigate potential financial losses. 
 
1.4 Stakeholders 
One of the primary stakeholders in the SIMBA project, in addition to our client, is the Cal Poly Computer 
Engineering (CPE) Department. Our progress and achievements are directly reflected in the department, 
as they have provided us with invaluable opportunities to engage and participate in this collaborative 
endeavor. Their support is instrumental in the success of this project, and we are committed to delivering 
results that not only benefit our client but also positively reflect upon the CPE Department and the CPE 
capstone program. 
 

1.5 Framed Insights and Opportunities 
Over the course of the SIMBA project, our team has engaged in extensive discussions and communications 
with our client, Tyler Bovenzi, as well as other stakeholders, to gain a comprehensive understanding of 
their respective needs and expectations. This section aims to synthesize the insights gathered from these 
interactions, distinguishing between the specific requirements of the client and those of other 
stakeholders, including community partners. 

Client-Centric Insights 
Tyler Bovenzi has provided invaluable insights into the project's core objectives and technical intricacies. 
Some key takeaways from our discussions with Tyler include: 

1. Minimum Viable Products: Tyler emphasized the critical components required for the SIMBA 
project's success, covering aspects like hardware, firmware, and software development. These 
include the integration of the new Kria K26 SoM, migration of Verilog firmware, and 
implementation of IMU and GPS functionalities. 

2. Access to Codebase: Tyler provided access to essential repositories, including the GoScout 
GitHub, which contains Python code used GPS/IMU integration. Additionally, he highlighted the 
significance of creating a dedicated GitHub repository for Verilog firmware, providing a way to 
keep track of changes and improvements as development continues. 
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3. Software Considerations: Tyler provided in-depth knowledge of which GPS and IMU support 
libraries should be used and avoided. Additionally, Tyler suggested a comprehensive 
understanding of both module’s register maps, which enabled us to configure the IMU module 
effectively for read/write operations. This also helped resolve the GPS read/write operations by 
informing us to adjust the message send rate and measurement frequency, ensuring that an 
appropriate number of bytes was accurately written per GPS message received. Lastly, Tyler 
recommended conducting a meticulous inspection for potential memory leaks.  

4. Firmware Considerations: Tyler demonstrated and described his Verilog modules for controlling 
the motors on the GoScout project. Using this information, as well as his source code, we were 
able to adapt the legacy motor driver source code for the ROACH project. 

5. Hardware Considerations: Tyler's guidance on hardware design, such as providing PCB schematics 
and noting cases where additional voltage regulation may be required, underpins the project's 
success. Additionally, Tyler recommended different software tools and manufacturers for 
designing and producing the PCB. 

6. Operating System Selection: Tyler shared insights on the potential operating systems for the 
SIMBA, weighing the advantages of PetaLinux and FreeRTOS against the resource-intensive nature 
of Ubuntu. 

Community Partners and Stakeholder Perspectives 
While our primary focus has been on meeting Tyler's explicit requirements, we recognize the broader 
implications of the project on the community and other stakeholders. Some critical observations include: 

1. Educational Impact: The project's potential as an educational tool for universities and robotics 
courses is substantial. Through the SIMBA rover, students can engage in and learn about a diverse 
array of engineering disciplines, including software, digital design, PCB design, and mechanical 
engineering. 

2. Space Agencies and Exploration: The SIMBA rover holds promise for space agencies, both in the 
public and private sectors. Its cost-effectiveness presents a valuable opportunity for testing new 
hardware and software components, potentially revolutionizing space exploration. 

3. Military Applications: The addition of an arm to the rover expands its applicability to military 
scenarios, particularly in hazardous material extraction. The cost-effectiveness of the rover aligns 
with the military's need for adaptable and replaceable equipment. 

4. Potential for Innovation: By providing an accessible platform for development and testing, the 
project could spur innovation within the field of robotics, leading to advancements that benefit a 
wide range of industries. 
 

1.6 Goals and Objectives 
The SIMBA project aims to achieve a seamless integration of the state-of-the-art Kria K26 SoM, 
revolutionizing the rover's processing capabilities. Additionally, objectives include firmware migration and 
optimization, enhanced software functionalities, establishment of GitHub repositories for version control, 
and cost-effective development that does not compromise performance or functionality. 

Project Goals 

1. Integration of SoM: The primary goal of the SIMBA project is the seamless integration of a cutting-
edge System on Module (SoM). This upgrade is anticipated to greatly enhance processing 
capabilities, enabling the rover to execute complex tasks with unprecedented efficiency. 



   
 

 
  |   6 

2. Firmware Migration and Optimization: A key objective is the migration of Verilog firmware to 
ensure compatibility with the new SoM. This task encompasses optimizing the codebase for 
performance and efficiency, paving the way for future enhancements. 

3. Enhanced Software Capabilities: SIMBA's software suite will be enriched with functionalities 
borrowed from the successful GoScout project. This includes advanced navigation algorithms, 
data processing techniques, and adaptive decision-making capabilities. 

4. Streamlined Hardware Design: A custom PCB will be designed to hold all the control electronics 
and provide all necessary I/O with some options for future expansion. 

5. GitHub Repositories for Version Control: Establishing dedicated GitHub repositories is crucial for 
streamlined collaboration and version control. This initiative ensures transparency in 
development and serves as a knowledge hub for future teams. 

6. Cost-Effective Development: A paramount objective is to develop cost-effectively without 
compromising on functionality or performance. This is specific to hardware, ensuring that the 
team actively searches for the best-priced components and manufacturing services when creating 
the PCB. This approach not only benefits our clients but also opens avenues for broader 
applications in education, research, and industry. 

Specific Objectives 

1. Complete SoM Integration: Achieve seamless integration of the SoM, ensuring all hardware 
components communicate effectively. 

2. Firmware Compatibility Testing: Rigorously test the migrated Verilog firmware to verify its 
compatibility with the new SoM. 

3. Optimize Verilog Firmware: Identify and implement optimizations in the Verilog codebase to 
enhance performance and resource utilization. 

4. Implement Advanced Navigation Algorithms: Integrate advanced navigation algorithms from the 
GoScout project to enhance SIMBA's autonomous capabilities. 

5. Develop a Custom System Control PCB: Design and integrate a PCB containing the Kria K26 SoM, 
I/O, power management, and motor control modules. 

6. Establish GitHub Repositories: Set up dedicated repositories on GitHub for organized version 
control, ensuring seamless collaboration among team members. 

7. Cost Analysis and Optimization: Conduct a thorough cost analysis of components and materials, 
seeking opportunities for optimization without compromising quality. 

8. Documentation and Knowledge Transfer: Maintain comprehensive documentation of all project 
developments, ensuring seamless knowledge transfer to future teams. 
 

1.7 Outcomes and Deliverables 
The SIMBA project will culminate in a series of tangible deliverables and outcomes meticulously designed 
to meet the needs of our client, community partners, and other stakeholders. These deliverables are 
structured to serve as clear indicators of progress and successful project completion. 

1. Integrated SoM: The pivotal achievement will be the seamless integration of a cutting-edge 
System on Module (SoM). This enhancement will grant the rover improved capabilities, 
revolutionizing its capacity to perform intricate tasks efficiently. The Minimum Viable Product 
(MVP) will comprise a PCB housing the SoM, complete with remapped I/O for optimized 
functionality. 
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2. Firmware Migration and Optimization: The Verilog firmware will undergo a migration process to 
ensure seamless compatibility with the new SoM module. This task encompasses thorough 
codebase optimization to enhance performance and efficiency. The outcome will be a refined 
firmware foundation, setting the stage for future enhancements. 

3. Enhanced Software Capabilities: Enhanced Software Capabilities: Building on the foundations laid 
by the successful GoScout project, the SIMBA software suite is set to undergo a significant 
enhancement, specifically having the software be updated from Python to C++ to facilitate greater 
performance.  Both GPS and IMU libraries have been modularized using object-oriented 
programming to make servicing GPS and IMU function calls more accessible to future software 
components. 

Upon reaching these critical milestones, the team will have successfully navigated through the MVP phase. 
The subsequent steps involve furthering hardware and software capabilities, considering scalability for 
additional motors, and investigating power optimization strategies. Additionally, the integration of 
advanced control algorithms and continuous refinement of the PCB layout will be prioritized. 
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2 Background Research 
 

2.1 Introduction 
This background section outlines the SIMBA system in its present state, detailing a comprehensive 
understanding of the software, hardware, and digital design decisions made, as well as research regarding 
the overall functionality of the previous design. Additionally, the software for the SIMBA project plans to 
expand its functionality by incorporating GPS and IMU functionality inspired by another project called 
GoScout. For more information about background research, please view the initial research document [2]. 
 

2.2 PCB Design and Integration 
The move to the Kria K26 SoM means a new PCB design that houses only the necessary electronics. This 
is because we want to consolidate functionality to a minimal set of hardware to improve power efficiency. 
To accomplish this, the hardware team will place the Kria K26 SoM onto a custom PCB that incorporates 
only essential connections to peripheral devices. When finished, the PCB should replace the original Kria 
KR260 development board. However, the hardware team’s first revision PCB works in conjunction with 
the development board instead of replacing it. 
 
Some improvements were made to the original PCB design to make it a more power-efficient system. This 
includes switching to a more power efficient switching voltage regulator from a linear voltage regulator. 
A 12V switching voltage regulator from Pololu was chosen to provide power to the Kria development 
board. This part was chosen based on previous experience with the manufacturer and a recommendation 
from Professor Murray. Additionally, the grounding of the board was improved by moving to a four-layer 
board design from two layers. This change will be beneficial for the final design housing the SoM to 
accommodate the increased component density.  
 
Finally, an additional change to improve power efficiency will be the removal of the cooling fan currently 
present on the Kria KR260 development board. According to the Kria documentation from AMD [15] the 
standalone Kria K26 SoM can handle approximately 6.8W of thermal load dissipation without any cooling 
solutions. The current power draw of the Kria will need to be evaluated and any additional thermal 
dissipation required will be accomplished through a passively cooled metal plate attached to the thermal 
pad of the K26. 
 

2.3 Kria KR260 Development and Integration 
The original design of the ROACH project made use of the PYNQ-Z1 development board which consisted 
of an ARM Cortex A9 processor and an FPGA. The new platform that the digital design team is switching 
to is the Kria KR260 robotics starter kit – a development board for the Kria K26 SoM which features a 
quad-core ARM Cortex-A53 processor paired with an FPGA. The move to the new development board was 
warranted by the need for a more powerful chip which doubled the number of cores compared to the 
original PYNQ board. It is also built specifically for robotics applications, so the board is well-suited for 
motor control and interfacing with the GPS and IMU that we have selected. 
 
The CPU and FPGA modules on the Kria SoM communicate via a high-speed Advanced eXtensible Interface 
(AXI) interconnect that can be configured in a Vivado block diagram. In addition to this, the general-
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purpose input/output (GPIO) pins can be configured to allow for the FPGA to communicate with external 
hardware like the motor controllers, or the GPS and IMU. Since the GPS and IMU use I2C to communicate, 
the Kria board will have to accommodate this by configuring certain GPIO pins to act as I2C-compatible 
pins.  
 
One problem that needs to be solved when implementing an autonomous rover design on an FPGA is 
power considerations. As this rover is meant for exploration on Mars, it will need to run for prolonged 
periods of time without external assistance from any humans. To do this, power conservation will need 
to be a main priority, and this can be optimized in the FPGA by minimizing the number of lookup tables 
(LUT) wherever possible. One of the most practical ways we might do this is to migrate from a finite state 
machine to a block ram. Another way we could minimize LUT’s is to avoid active low signals. These require 
an inversion before they can directly derive the control port of a flip flop and take up one more LUT than 
active high signals. 
 

2.4 GPS and IMU Development and Integration 
One of the primary software goals for the SIMBA rover is onboard integration with the SAM-M8Q (GPS) 
[6] and ICM-20948 (IMU) [7] modules, which requires the creation of C++ libraries for these modules for 
portability. Currently, this functionality is implemented in Python using standard packages created for 
these modules with the GPS data sheet found respectively at [3] and the IMU datasheet at [10], but with 
the SIMBA rover focusing on performance optimization, the software team is focused on migrating the 
functionality implemented in Python to the more efficient C++ programming language.  
 
For GPS integration, the team has delved into understanding key libraries and communication protocols 
since the GPS is u-blox protocol based. They have extensively researched the Melopero_SAM-M8Q library 
and the u-blox protocol, which is commonly used with u-blox and GNSS GPS receivers. The UBX protocol 
employs a binary format to transmit messages, each of which contains a message identifier, payload data, 
and checksum information [7]. These messages will be transmitted via I2C and interpreted by the 
Melopero_SAM-M8Q library, which serves as an API between the development board and the GPS 
module [2]. To support I2C communication, the team plans to use the libi2c-dev library instead of the 
previously used "smBus2" library in the Python implementation [11]. Overall, this requires the 
incorporation of a library for u-blox protocol to format the buffers and message. Ultimately, GPS 
integration is crucial for providing the rover with accurate global position information, and in the larger 
scheme for creation of mapping to generate maps to determine the terrain and establish a coordinate 
system like Earth.   
 
In the process of integrating the ICM-20948 (IMU) board, the SIMBA team is transitioning from the smBus2 
library and board module used for I2C interfacing in Python to the libi2c-dev library in C++. This change 
aligns with the approach taken for GPS integration, ensuring consistency across the development process. 
The IMU provides critical support by supplying accelerometer and gyroscope data, which is particularly 
valuable in instances where GPS signals are unavailable or unreliable. This built-in redundancy is crucial 
for preserving the operational functionality and navigational accuracy of the rover under such conditions. 

In addition, the team has been evaluating various C++ libraries to facilitate real-time plotting of 
acceleration and gyroscope data during testing and analysis. After careful consideration, the decision was 
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made to adopt the matplotlibc++ library, which replicates the functionality of Python’s matplotlib library 
[13]. The team recognized that matplotlibc++ requires CMake, which required learning to utilize it to 
compile the libraries. The data plots generated are instrumental in the development of filtering 
algorithms, which will process the raw data to ensure that the readings fall within acceptable ranges and 
adhere to predetermined standards. 
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3 Marketing and Customer Requirements 

3.1 Project Goals 
The objective of this project is to create a fully operational prototype of the SIMBA rover, incorporating 
materials from the previous capstone project (ROACH). The aim is to construct a space-capable rover for 
our client. The outlined goals and deliverables for this project are as follows: 

• Integrating the KR260 development board into the existing project, replacing older hardware. 
• Porting the Verilog firmware from the PYNQ-Z1 FPGA to the new platform, ensuring compatibility. 
• Updating and expanding the C code used to interface with and control the FPGA. 
• Designing and fabricating a PCB to house the SoM and other necessary electronics in a single 

package. 
• Incorporating software from the GoScout project, focusing on improving navigation and 

enhancing data processing. 
 

3.2 Marketing and Customer Requirements Table 
Many requirements were derived through back-and-forth discussion with our client Tyler. These 
discussions involved a balance of fulfilling necessary client requirements, while communicating and 
retaining important constraints and limitations to our design. We also engaged in discussion with our 
partnered mechanical engineering teams, on the aspects of the design that are determined at a system 
level, notably power consumption, which relies heavily on the power output of the solar cells and the 
current draw of the motors. 

Spec # Customer / 
Marketing 

Engineering 
Parameter 

Engineering 
Requirements 
(with units) 

Tolerance Risk Compliance 

1 Efficient Energy 
Consumption 

4 W Avg M A, T 

2 Accurate  
 

GPS Positional 
Accuracy 

2.5 M Max M A, T 

3 Accurate Motor Control 
Accuracy 

3000 pulses per 
rotation 

None M A, T 

4 Durable Part exp. lifetime 1 year Min H A 
5 Functional Features 

implemented 
All legacy ROACH 
features. 

Min M A, S, T 

6 Cheap Production Cost  
(SIMBA Rover-
On-Chip) 

$500 Max M A 

7  Environmen
tal 

Emission, Supply 
Chain 

Zero Rover 
Emissions,  
Limited Battery 
Size (power 
efficiency) 

Max L A, T 

Figure 1: SIMBA Marketing and Customer Requirements Table. 
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3.3 Testing Plan 
We plan to conduct extensive testing to ensure that we meet each of these marketing and engineering 
goals. Our designs will go through detailed analysis (A), to confirm that each design at least nominally 
fulfills the requirements listed above. Following the design phase, when we have constructed the system, 
certain features will undergo physical testing (T). Particularly these features will include more of the 
physical attributes of the rover, including energy consumption, GPS positional accuracy, motor control 
accuracy, and the functionality of the entire system. The initial goal is for the functionality of the SIMBA 
system to meet the same functionality of the ROACH system, then to add new features to the existing 
system. 
 

3.4 Customer Archetypes and Use Types 

 

Figure 2: SIMBA use case diagram 

Our customer archetypes include space agencies, universities, and the military. Possible applications 
include space exploration, use as a development platform for other projects, research, education, and 
various humanitarian applications. More information is available on these customer archetypes and their 
use cases in SIMBA’s Archetypes and Use Cases Report [4]. 
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3.5 Marketing Data Sheet 

 

Figure 3: SIMBA Marketing Data Sheet. 

The SIMBA marketing datasheet provides a concise yet comprehensive overview of our groundbreaking 
project. Highlighting key aspects such as unmet customer needs, unique value propositions, target 
customer demographics, and disruptive go-to-market strategies, this document encapsulates the essence 
of SIMBA's revolutionary approach in the field of autonomous rover technology. With detailed insights 
into product objectives, pricing, and availability, the marketing datasheet serves as an indispensable 
resource for stakeholders seeking a clear understanding of SIMBA's value proposition and market 
positioning. 
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4 Design Development 
 
The ROACH and GoScout systems serve as the primary initial conceptual prototypes for the SIMBA project. 
Additionally, integration and testing will be facilitated using a Kria KR260 development board and a 
specially designed PCB intended to work with the development board. This approach ensures thorough 
evaluation before transitioning the new system to the physical rover. 
 

 

Figure 4: SIMBA Design Development Flowchart. 

Current prototyping consists of breadboard I/O testing on the Kria development board, Raspberry Pi I2C 
communications testing with the IMU and GPS, and C software development. When the prototype motor 
control PCB is finished, these prototyping projects can be consolidated into the single prototype system 
using the Kria development board to finalize designs decisions before integrating the final board. 
 

4.1 Hardware Development  
The first iteration of the new rover control PCB is based on the motor control PCB from the ROACH 
capstone project. Because much of the FPGA design was based on the work done for ROACH, the updated 
motor control PCB maintained the same motor controller architecture with 10 for rover movement, and 
4 spare for future expansion. The two primary changes to the board were the power distribution and I/O. 
Previously the ROACH motor control board was designed to mount on top of the PYNQ-Z1 development 
board. For this iteration of the SIMBA PCB, the I/O was reworked to mirror the PMOD connectors and 
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Raspberry PI HAT pin header on the KRIA KR260 development board to allow for easy testing and 
reconfiguration of connections. The power conversion system was changed from a linear regulator to a 
switching voltage regulator for efficiency improvements. A 12V step down converter was added to power 
the Kria development board and a 3.3V rail was provided from the Kria development board. The PCB 
design was switched to a four-layer layout from a two-layer PCB to add a ground plane and battery voltage 
plane for better grounding and easier routing of battery power to the motors. 

 

Figure 5: SIMBA PCB Schematic. 

The next steps in hardware design will be incorporating the Kria K26 SoM and some of the necessary 
modules from the Kria KR260 development board onto the next PCB. The current PCB acted as a proof of 
concept for integrating the rover control onto the Kria SoM, and will provide a platform for firmware and 
software development while the next PCB revision is under development. 

Some improvements from the current PCB iteration will include new motor to PCB connectors, and 
additional pull-up resistors on motor control connections. The motor connectors will be changed from 
2x3 pin headers to a mounted, keyed, 6 pin connector. Having keyed connectors will help prevent 
incorrectly connecting the motors to the control board and should reduce the possibility of damaging 
components. An ongoing investigation is occurring into why some of the Kria development board GPIO 
are not fully functional with the suspected issue being a lack of pull-up resistors on open-drain pins. 
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Figure 6: Current SIMBA PCB Modules Layout. 

Without a cooling fan, the 12V voltage rail currently being supplied by the motor control PCB can be 
removed. Thus, power distribution will consist of the battery voltage, controlled by a switch, and 5V, 3.3V 
and 1.8V rails dependent on the Kria SoM requirements and what each module ported over from the 
development board requires. Additional layers could be introduced to help with power routing, 
particularly for the widely used 3.3V rail. 

To simplify the necessary I/O, the next iteration of circuit board will drop the ethernet connectivity of the 
Kria development board for WIFI, thus allowing control of the rover while in motion without a tethered 
connection. A USB interface will be maintained for a wired computer connection and eventually possible 
expansion for additional components from other capstone project teams. An additional solenoid control 
MOSFET and connector will be added by the request of the mechanical teams.  
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Figure 7: Future SIMBA PCB Modules Block Diagram. 

4.2 Digital Design Development 
The new SIMBA firmware builds off the ROACH project’s original Verilog code. However, several 
improvements were made. It was refactored to support a more robust design and accommodate the new 
Kria KR260 development board for constraints and the Kria K26 SoM for internal design [16]. 

 

Figure 8: Single Motor Controller Verilog Module. 
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(¬𝑃𝑊𝑀	 ∨ 	𝐷𝐼𝑅) 	∧ 𝐸𝑁 = 𝑂𝑈𝑇1 

¬(𝑃𝑊𝑀	 ∧ 	𝐷𝐼𝑅	) 	∧ 	𝐸𝑁 = 𝑂𝑈𝑇2 

Figure 9: H-Bridge Decoder. 

Because ROACH employs a different SoM than GoScout, the architecture of the digital design needed to 
be heavily modified to support communication between the ARM CPU and FPGA within the Kria KR260. 
It was also particularly challenging to adapt the project to work with the new constraints defined by the 
Kria system. 

To support a more robust system, the block design was modified to use a hierarchical, abstracted structure 
where each motor is assigned its own motor controller, and AXI GPIO address. This is opposed to ROACH’s 
flat design, where all 14 motors are controlled by a single, monolithic, multi-motor control module. While 
this increased modularity increases the complexity of the architecture and block design, it makes the 
project more maintainable, flexible, and scalable. Adding or removing a motor to the rover design only 
requires adding or removing two blocks from the block design. In addition to these modifications, a single 
AXI I2C block was added to the block design to communicate with the GPS and IMU. 

 

Figure 10: Rover Block Design in Vivado. 

In the image above, you can see a diagram of this hierarchical architecture. Each of the 14 blocks on the 
far right are our individual motor control modules. Immediately to the left of those blocks are the 
associated AXI GPIO modules, that are each assigned to a specific motor controller module. 

While this hierarchical system increases modularity compared to previous rover generations, we still faced 
significant challenges in bringing all 14 motors to life. Because our first-generation PCB connects to the 
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Kria KR260 development board, rather than connecting to the Kria SoM itself, we were required to use 
the limited GPIO available from the development board to control each motor, leading to several issues 
and setbacks.  Several I/O pins on the Kria development board are pulled high or low without respect to 
our digital design needs, causing several motors to drive uncontrollably or failing to report their position 
accurately. To circumvent this issue, we were able to utilize auxiliary motor control ports to control most 
motors on the rover, but a long-term solution will require further debugging efforts, and potential PCB 
revisions. 

4.3 Software Development 
Software development has been focused on establishing closed loop motor control and interfacing the 
I2C peripherals. Both efforts build heavily upon the digital design team’s work. 

Closed Loop Motor Control 

 

Figure 11: Inheritance Diagram for the Rover. 

The digital design team created a motor controller Verilog module, which handles the real-time aspects 
of controlling a motor such as PWM signal generation and quadrature encoder decoding. However, to 
make use of that motor controller there must be a software interface. This interface was implemented 
using memory mapped I/O (MMIO), where certain memory addresses in the Kria SoM’s RAM correspond 
to the control signals from the motor controller Vivado module. As seen in the inheritance diagram, the 
MMIO interface is inherited by the motor controller class. This is simply a software representation of the 
hardware module and allows for its simple use and configuration.  

With motors being controlled in software, control logic needs to be implemented to create a closed loop 
motor system. In a closed loop motor system, a setpoint is issued by the user and the system moves the 
motor as quickly and accurately as possible to that setpoint. This control logic implemented here is called 
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a proportional-integral-derivative (PID) controller. The servo class unifies the motor controller’s ability to 
read and control the motor’s position with this closed loop control algorithm. 

 

Figure 12: Diagram of SIMBA’s Control Loop System. 

As seen in Figure 12, implementing closed loop control in software was the last step in a long chain of 
different components – all of which need to work correctly together. The motor turns the encoder, whose 
position is decoded by the hardware motor controller, and read by the software motor controller. Then 
the PID controller determines a new motor control signal which is fed into the software motor controller, 
decoded by the hardware motor controller (using the equations in Figure 9), and actualized by the motor 
driver IC on the PCB to move the motor. 

 

Figure 13: PID Controller Plot for Motors.  

When this system was working, we were able to test it by creating a demo application involving real time 
plotting of the setpoint position vs actual motor encoder position. As you can see in Figure 13, the 
controller is able to recover and resume operation despite external influences such as holding the wheel 
in a fixed position and then letting go. 
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Figure 14: P Controller Plot for Encoders. 

However, before the demo application was able to produce results like that, the PID loop needed to be 
manually tuned. Initially, the P gain is turned on and the I, D gains are turned off. The P stands for 
proportional, and it produces a corrective motor control signal proportional to the error between the 
desired setpoint and the measured motor position. Tuning the P gain resulted in the above behavior seen 
in Figure 14, where after moving the wheel, it would come close back to the zero position but not all the 
way there. This is because the error was small enough that the resultant corrective signal was not strong 
enough to move the motor all the way back to zero. 

 

Figure 15: PI Controller Plot for Encoders. 

To fix that issue, the I gain was turned on and tuned. The I stands for integral, and it produces a corrective 
motor control signal whose strength is equivalent to the integral of the error over time. In this way, when 
the motor is almost at zero but is still off by a little, there is an error term that gets integrated and the 
strength of the corrective motor control signal increases until it is enough to move the motor all the way 
to zero. This results in a plot like that shown in Figure 15. 
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Figure 16: PID Controller Plot for Encoders. 

Finally, as one might have seen in Figure 15, the motor overshot the zero position on its way back down. 
To prevent this overshooting, or overcorrecting by the PID algorithm, we had to tune the D gain. The D 
stands for derivative, and it reduces the strength of the control signal when the motor is approaching the 
setpoint too fast. After tuning all three gains the resultant plot shown above was obtained, where after 
moving the wheel, it immediately returned to zero position and did not overshoot its target. These tuned 
PID gains were used in the demo application mentioned previously. 

GPS and IMU 
The former GoScout system included Python implementations of rover control using GPS and IMU data. 
Using a Raspberry Pi, the software for communications and controls will be tested prior to being ported 
to C++ for the Kria SoM. The project implemented simple movement control onto an FPGA and CPU and 
is the most recent iteration of the rover project. The GoScout digital and hardware design will provide the 
foundation for SIMBA along with SIMBA C++ GPS and IMU implementation and other new features being 
built into the new Kria SoM. 

 
 
 



   
 

 
  |   23 

 

Figure 17: Test Setup of GPS (SAM_M8Q) and IMU (ICM-20948) Module for New Code Migrations. 

During the rover's prototyping phase, we committed to meticulously gathering data to not only validate 
the rover's requirements but also to solidify its expected operational behavior. An integral part of this 
process involves the use of GPS and IMU systems, which will become beneficial in navigating during 
autonomous missions. 

The GPS module within the rover interfaces via the I2C communication protocol while formatting the 
messages according to the u-blox protocol, which is specifically designed for GNSS applications, enabling 
effective communication with satellites to obtain essential data [8]. This includes verifying the presence 
of active satellites and accurately determining geographical coordinates (longitude and latitude) with a 
precision of up to seven decimal places. 

To ensure the reliability of these coordinates, our initial verification process involves inputting them into 
Google Maps. This step confirms their accuracy by correlating them with known locations, particularly the 
vicinity of the capstone lab at Cal Poly EE, which is the primary site for our testing. Advancing this 
verification process, we also utilize the Google Maps API to generate static map images pinpointing the 
rover's GPS-determined position. These map representations provide a clear and visual affirmation of the 
GPS module's accuracy, as exemplified in Figure 18, which illustrates the rover's location via a Google 
Maps image. 
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Figure 18: Google Maps Images with Markers Generated from GPS Coordinates.  

Incorporating the GPS was a significant milestone, and alongside this, the IMU C++ libraries also 
demonstrated their efficacy. This was evidenced through the successful retrieval and confirmation of nine 
critical data points encompassing acceleration, magnetometer, and gyroscope readings across the X, Y, 
and Z axes. To facilitate this, various control registers were meticulously configured to accurately read and 
interpret the necessary bytes of data. This data was then dynamically plotted in real-time through a 
dedicated C++ library compatible with Matplotlib, providing a visual depiction of the three measurements. 

For functional testing, the IMU module was manually manipulated — rotated and moved — to actively 
observe the corresponding fluctuations on the graph. This real-time responsiveness is illustrated in the 
first three figures found in the appendix. While these graphs currently serve a limited purpose, as the 
rover has yet to traverse around the campus or similar environments, they lay the groundwork for future 
data visualization when the SIMBA rover commences its mobility. 

In summary, the ongoing tests with the IMU and GPS have yielded a preliminary level of accuracy, offering 
valuable insights into what can be anticipated in the final system. These insights are particularly 
instrumental in shaping our strategy for the rover's control loop. The full-scale validation and calibration 
of this control loop, crucial for precise movement, will be conducted once the entire system is seamlessly 
integrated onto the rover. This final step will be pivotal in ensuring the rover's operational efficacy and 
reliability. 

PetaLinux 
With the software team setting up C++ libraries for I2C communication with the GPS and IMU, the digital 
design team needed to incorporate a new I2C bus to the block design which can be seen in Figure 10. The 
GPS and IMU were originally tested on a Raspberry Pi so that the software team was not blocked by the 
firmware or hardware teams. However, when trying to incorporate them into the rover, several 
roadblocks were hit. Since the new I2C block is routed through the FPGA, it is essentially adding a new 
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hardware bus to the K26 SoM that the operating system (OS) is not aware of. So, a modified version of 
the Linux operating system must be created. This was the only option that the digital design team had 
because the onboard I2C bus, which was not routed through the FPGA, was not exposed for connection 
to external hardware on the Kria KR260 development board.  

To create this new operating system, there is a program called PetaLinux [17] which can be configured 
with a specific hardware description from Vivado to create a bare-bones Linux operating system that will 
recognize the new I2C bus. It is a powerful tool, but it is also extremely complicated and lacks thorough 
instructional documentation. This software has been a block in trying to incorporate the GPS and IMU to 
the rover.  

The first roadblock hit was a problem with the newest version of PetaLinux and the Kria KR260 board 
support package (BSP), both of which are version 2023.1. There are some missing dependencies in the 
board support package that PetaLinux looks for in version 2023.1, so it was necessary to downgrade to 
version 2022.2 for both items. After reinstalling and retesting the hardware description file in PetaLinux, 
a project was successfully built, and a boot image was created.  

Although a project was successfully built and configured, when attempting to boot the Kria KR260 from 
the new OS image, the output from the board hung on “Starting Kernel….” This may be a problem with 
the current version of Ubuntu. The latest release of Ubuntu, version 22.04 LTS (which is what the digital 
design team was using), may not be supported by PetaLinux. The next step would be to set up a new 
virtual environment with a past version of Ubuntu and retry the PetaLinux build. Although the new PCB 
could be made to route the existing hardware I2C bus, PetaLinux would still be necessary for a real-time 
operating system (RTOS), so it is important that a successful boot image is created. The digital design team 
is currently blocked at this point in the incorporation of the GPS and IMU to the rover.  
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5 Management Plan 
5.1 Development Teams 
To facilitate the development of the SIMBA platform, three teams have been created to focus 
development efforts into three main branches – software, hardware, and digital design, as depicted in 
Figure 19 below. 

 

Figure 19: SIMBA Development Spectrum 

On the development spectrum, project deliverables are placed in relation to the three main branches. 
Once defined, group members organized into teams according to their strengths and confidence in ability 
to complete tasks. Below are the resultant teams: 
 

Hardware Team 

Sepp Williams  Engineer, PCB Design 

Digital Design Team 

Ian Beck   Engineer, Firmware Design 

Curtis Bucher   Engineer, Firmware Design 

Braedan Kennedy  Project Lead, Software Design 

Software Team 

Brian Nguyen  Engineer, Software Design 

Luis David Garcia  Project Liaison, Software Design 

 
The hardware team is focused on the primary project deliverable of designing and producing a 
motherboard to connect all electrical components of the system. Only one engineer is currently required 
for this task as the initial deliverable consists of only a circuit schematic. 
 
The digital design team is focused on the primary project deliverable of transferring motor control 
functionality to the new FPGA. This task requires the most research and development as the Kria KR260 
platform is almost entirely different from the previous PYNQ-Z1 platform and most software development 
is dependent upon its functional operation. 
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The software team is focused on the primary project deliverable of updating and improving the C code 
responsible for interfacing with the FPGA and other peripherals.  
 
All teams work together closely with each other to forward their primary objective. Some tasks require 
more collaboration than others – such as the development of the FPGA C driver which involves both the 
software and digital design team. 
 

5.2 Management Positions 
In addition to teams, there are two management positions – project lead and project liaison. The project 
lead coordinates the efforts of the three development teams, hosts meetings, keeps track of overall 
progress, and coordinates with the project liaison. This position requires in-depth knowledge concerning 
all technical aspects of the project. The project liaison is the public interface to the development team. 
Often called the client contact, the project liaison establishes and maintains communication channels with 
all external contacts such as the client, project manager, and other engineering teams. This position 
requires setting up meetings, sending emails, and communicating with the rest of the team. 
 
Currently, there are no explicit financial management roles as this project is not expected to be making 
many purchases. Also, there are no explicit product verification roles as each team is responsible for 
producing very different products. When financial or product verification tasks are required, teams are 
expected to handle it themselves or with oversight from the project lead if needed. 
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6 Project Schedule  

 

Figure 20: Gantt Chart. 
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Team Member Tasks Expected 
Work Hours 

Braedan Kennedy Researching Kria K26 8 
 Begin development on mission control software 10 
 Begin development on autonomous navigation software 10 
 Implement watchdog timer in FPGA and software 3 
Curtis Bucher Debug existing motor control issues 6 

Adapt motion API to work with arm and vision software. 8 
Evaluate hardware acceleration for arm and vision teams 4-16 

Ian Beck Create bootable PetaLinux image that recognizes I2C bus.  8-10 
 Incorporate GPS/IMU C++ libraries into development 

environment. 
4 

 Implement rover control functionality based on GPS/IMU 
data 

16 

Sepp Williams Designed new motor control PCB schematic and layout with 
updated I/O and voltage regulator. 

14 
(Completed) 

 Finished PCB manufacturing for two boards and validated 
I/O, voltage regulation, and motor control 

12 
(Completed) 

 Design a full control PCB schematic and layout with K26 SoM 18-24 
 Manufacture and test the new K26 SoM PCB 12-16 
Brian Nguyen Validate the IMU library on the KRIA board so that it is 

successfully integrated. 
8 

 Creation of Kalman filters for IMU acceleration, gyroscope, 
and magnetometer data. 

12 

 Create documentation for Kalman filters.  3 
Luis Garcia Validate the GPS library on the KRIA board so that it is 

successfully integrated. 
8 

 Creation of Kalman filters for GPS coordinate data. 12 
 Coordinate with Tyler regarding any integrations he would 

like to see with Arm and Vision teams 
2 

Figure 21. Estimated Future Development Tasks and Hours Table.  
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7 Appendices 

7.1 Accelerometer Data Plot 

 
Figure 22: Accelerometer Data from IMU Displaying Acceleration of X, Y, and Z Axis in units of [m2/s]. 

7.2 Gyroscope Data Plot 

 
Figure 23: Gyroscope Data from IMU Displaying Rotation in the X, Y, and Z Axis’ in units of [Degrees/s]. 
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7.3 Magnetometer Data Plot 

 
Figure 24: Magnetometer Data from IMU Displaying Acceleration of X, Y, and Z Axis in units of [µTesla/s]. 

7.4 Bill of Materials 

Component Cost per Part # of Parts Total 

PCB Manufacturing  $           5.92  1  $     5.92  

0.1uF 50V Capacitor  $           0.10  42  $     4.20  

22uF 63V Capacitor  $           1.27  14  $   17.78  

30K Resistor  $           0.10  14  $     1.40  

2K Resistor  $           0.48  14  $     6.72  

DRV8871 Motor Controller  $           2.24  14  $   31.36  

2x3 Pin Header  $           0.15  14  $     2.16  

2x6 Pin Header  $           0.29  4  $     1.14  

2.1mm Power Plug  $           5.00  1  $     5.00  

40 Pin Raspberry PI HAT Header  $           4.52  1  $     4.52  

XT60 Battery Connector  $           1.50  1  $     1.50  

QWIIC Connector 4-Pin  $           0.56  1  $     0.56  

Slide Switch 5A 120V  $           3.45  1  $     3.45  
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Pololu 12V 4.5A Buck Converter  $         24.95  1  $   24.95  

Kria KR260 Robotics Starter Kit  $       349.00  1  $ 349.00  

Jumper Wire Male to Female 6" 28AWG Bulk  $           1.95  1  $     1.95  

   
 $ 461.61 

Figure 25: Build of Materials (BOM) of current iteration of SIMBA control electronics PCB and Kria KR260 Dev-board. 
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